
conjugate gradients

intuition and application

jake roth

February 27, 2020



Outline

Overview

Background

Computation

Error (convergence) analysis

Application

conjugate gradients 2 / 34



Outline

Overview

Background

Computation

Error (convergence) analysis

Application

conjugate gradients Overview 3 / 34



motivation

Ax = b, A � 0, A = A>

conjugate gradients Overview 4 / 34



motivation

lifecycle of an optimization problem

consider minx f (x)

I build local model mk(dk) = 〈∇x f (xk), dk〉+ 1
2 〈dk , Ĥ(xk)dk〉

I near a solution
I expect Ĥ(xk) � 0
I take Newton step Ĥ(xk)dk = −∇x f (xk)

I boils down to solving Ax = b for A � 0,A = A>

other examples

I least squares
I linear: ‖y − Ax‖22 =⇒ x? = (A>A)−1A>y
I nonlinear: ‖y − f (x)‖22 =⇒ ∆x = (J>J)−1J>y

I rootfinding: f (x) = 0; interpret as minx F (x) for f = ∇F

CG...from where?

I presented with algorithm and prove properties about algorithm
I but where does CG come from?

conjugate gradients Overview 5 / 34



motivation
lifecycle of an optimization problem

consider minx f (x)

I build local model mk(dk) = 〈∇x f (xk), dk〉+ 1
2 〈dk , Ĥ(xk)dk〉

I near a solution
I expect Ĥ(xk) � 0
I take Newton step Ĥ(xk)dk = −∇x f (xk)

I boils down to solving Ax = b for A � 0,A = A>

other examples

I least squares
I linear: ‖y − Ax‖22 =⇒ x? = (A>A)−1A>y
I nonlinear: ‖y − f (x)‖22 =⇒ ∆x = (J>J)−1J>y

I rootfinding: f (x) = 0; interpret as minx F (x) for f = ∇F

CG...from where?

I presented with algorithm and prove properties about algorithm
I but where does CG come from?

conjugate gradients Overview 5 / 34



motivation
lifecycle of an optimization problem

consider minx f (x)

I build local model mk(dk) = 〈∇x f (xk), dk〉+ 1
2 〈dk , Ĥ(xk)dk〉

I near a solution
I expect Ĥ(xk) � 0
I take Newton step Ĥ(xk)dk = −∇x f (xk)

I boils down to solving Ax = b for A � 0,A = A>

other examples

I least squares
I linear: ‖y − Ax‖22 =⇒ x? = (A>A)−1A>y
I nonlinear: ‖y − f (x)‖22 =⇒ ∆x = (J>J)−1J>y

I rootfinding: f (x) = 0; interpret as minx F (x) for f = ∇F

CG...from where?

I presented with algorithm and prove properties about algorithm
I but where does CG come from?

conjugate gradients Overview 5 / 34



motivation
lifecycle of an optimization problem

consider minx f (x)

I build local model mk(dk) = 〈∇x f (xk), dk〉+ 1
2 〈dk , Ĥ(xk)dk〉

I near a solution
I expect Ĥ(xk) � 0
I take Newton step Ĥ(xk)dk = −∇x f (xk)

I boils down to solving Ax = b for A � 0,A = A>

other examples

I least squares
I linear: ‖y − Ax‖22 =⇒ x? = (A>A)−1A>y
I nonlinear: ‖y − f (x)‖22 =⇒ ∆x = (J>J)−1J>y

I rootfinding: f (x) = 0; interpret as minx F (x) for f = ∇F

CG...from where?

I presented with algorithm and prove properties about algorithm
I but where does CG come from?

conjugate gradients Overview 5 / 34



ongoing quadratic example

optimization

consider the unconstrained convex quadratic function

minimize
x∈Rn

f (x) := 1
2x
>Ax − b>x (1)

where A � 0,A = A>

linear system

solution to Eq. (1) solves Ax = b

∇x f (x) = 0 ⇐⇒ Ax − b = 0 (2)

because of convexity in f due to structure of A

conjugate gradients Overview 6 / 34



ongoing quadratic example

optimization

consider the unconstrained convex quadratic function

minimize
x∈Rn

f (x) := 1
2x
>Ax − b>x (1)

where A � 0,A = A>

linear system

solution to Eq. (1) solves Ax = b

∇x f (x) = 0 ⇐⇒ Ax − b = 0 (2)

because of convexity in f due to structure of A

conjugate gradients Overview 6 / 34



ongoing quadratic example

optimization

consider the unconstrained convex quadratic function

minimize
x∈Rn

f (x) := 1
2x
>Ax − b>x (1)

where A � 0,A = A>

linear system

solution to Eq. (1) solves Ax = b

∇x f (x) = 0 ⇐⇒ Ax − b = 0 (2)

because of convexity in f due to structure of A

conjugate gradients Overview 6 / 34



history

optimization framework

I goal: f (xk+1) < f (xk)
I Newton method: Isaac Newton, 1600s
I gradient descent: Augustin-Louis Cauchy, 1850s
I nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

linear systems framework

I Jacobi method (diagonally dominant Ax = b): Carl Gustav Jacob
Jacobi, 1850s

I modified Richardson method (fixed step-size gradient descent
Ax = b): Lewis Richardson, 1910)

I Krylov methods
I CG (symmetric, positive-definite Ax = b): Magnus Hestenes and

Eduard Stiefel, 1950s
I GMRES (nonsymmetric Ax = b): 1950s

interpret CG from optimization and linear systems perspectives

conjugate gradients Overview 7 / 34



history
optimization framework

I goal: f (xk+1) < f (xk)
I Newton method: Isaac Newton, 1600s
I gradient descent: Augustin-Louis Cauchy, 1850s
I nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

linear systems framework

I Jacobi method (diagonally dominant Ax = b): Carl Gustav Jacob
Jacobi, 1850s

I modified Richardson method (fixed step-size gradient descent
Ax = b): Lewis Richardson, 1910)

I Krylov methods
I CG (symmetric, positive-definite Ax = b): Magnus Hestenes and

Eduard Stiefel, 1950s
I GMRES (nonsymmetric Ax = b): 1950s

interpret CG from optimization and linear systems perspectives

conjugate gradients Overview 7 / 34



history
optimization framework

I goal: f (xk+1) < f (xk)
I Newton method: Isaac Newton, 1600s
I gradient descent: Augustin-Louis Cauchy, 1850s
I nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

linear systems framework

I Jacobi method (diagonally dominant Ax = b): Carl Gustav Jacob
Jacobi, 1850s

I modified Richardson method (fixed step-size gradient descent
Ax = b): Lewis Richardson, 1910)

I Krylov methods
I CG (symmetric, positive-definite Ax = b): Magnus Hestenes and

Eduard Stiefel, 1950s
I GMRES (nonsymmetric Ax = b): 1950s

interpret CG from optimization and linear systems perspectives

conjugate gradients Overview 7 / 34



history
optimization framework

I goal: f (xk+1) < f (xk)
I Newton method: Isaac Newton, 1600s
I gradient descent: Augustin-Louis Cauchy, 1850s
I nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

linear systems framework

I Jacobi method (diagonally dominant Ax = b): Carl Gustav Jacob
Jacobi, 1850s

I modified Richardson method (fixed step-size gradient descent
Ax = b): Lewis Richardson, 1910)

I Krylov methods
I CG (symmetric, positive-definite Ax = b): Magnus Hestenes and

Eduard Stiefel, 1950s
I GMRES (nonsymmetric Ax = b): 1950s

interpret CG from optimization and linear systems perspectives

conjugate gradients Overview 7 / 34



history
optimization framework

I goal: f (xk+1) < f (xk)
I Newton method: Isaac Newton, 1600s
I gradient descent: Augustin-Louis Cauchy, 1850s
I nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

linear systems framework

I Jacobi method (diagonally dominant Ax = b): Carl Gustav Jacob
Jacobi, 1850s

I modified Richardson method (fixed step-size gradient descent
Ax = b): Lewis Richardson, 1910)

I Krylov methods
I CG (symmetric, positive-definite Ax = b): Magnus Hestenes and

Eduard Stiefel, 1950s
I GMRES (nonsymmetric Ax = b): 1950s

interpret CG from optimization and linear systems perspectives

conjugate gradients Overview 7 / 34



Outline

Overview

Background

Computation

Error (convergence) analysis

Application

conjugate gradients Background 8 / 34



representing the error

total error

from an initial guess x0 dente the error

e0 := x? − x0 (3)

where x? = arg min f (x) from Eq. (1)

reconstruct the error

I suppose we have n linearly independent vectors {d0, d1, . . . , dn−1}
I can we build the error in one go?

I e0 =
∑

i αidi for αi ∈ R
I easy if we know αi

I how can we find αi?

I can we build the error iteratively? ek = x? − xk

conjugate gradients Background 9 / 34



representing the error

total error

from an initial guess x0 dente the error

e0 := x? − x0 (3)

where x? = arg min f (x) from Eq. (1)

reconstruct the error

I suppose we have n linearly independent vectors {d0, d1, . . . , dn−1}
I can we build the error in one go?

I e0 =
∑

i αidi for αi ∈ R
I easy if we know αi

I how can we find αi?

I can we build the error iteratively? ek = x? − xk

conjugate gradients Background 9 / 34



representing the error

total error

from an initial guess x0 dente the error

e0 := x? − x0 (3)

where x? = arg min f (x) from Eq. (1)

reconstruct the error

I suppose we have n linearly independent vectors {d0, d1, . . . , dn−1}
I can we build the error in one go?

I e0 =
∑

i αidi for αi ∈ R
I easy if we know αi

I how can we find αi?

I can we build the error iteratively? ek = x? − xk

conjugate gradients Background 9 / 34



linearly independent vectors

conjugate gradients Background 10 / 34



first-order iterative methods
search direction

I first-order methods use current (and possibly historical) gradient
information to determine the next iterate

I update xk with a step in direction dk with

dk ∈ x0 + span{∇f (x0),∇f (x1),∇f (x2), . . . ,∇f (xk)} (4)

I gradient descent (GD): dk = −∇f (xk)
I steepest descent (SD): dk = −∇f (xk)
I coordinate descent (CD): [dk ]i = −[∇f (xk)]i if i = î , 0 otherwise
I conjugate gradient (CG): tbd

stepsize

I GD: α← ᾱ ∈ R+

I SD: α← α? where α? = arg minα f (xk + αdk)
I CD: α← α? where α? = arg minα f (xk + αdk) (different dk)
I CG: tbd

conjugate gradients Background 11 / 34



quadratic example (cont’d)

conjugate gradients Background 12 / 34



quadratic example (cont’d)

conjugate gradients Background 13 / 34



quadratic example (cont’d)

conjugate gradients Background 14 / 34



quadratic example (cont’d)

conjugate gradients Background 15 / 34



quadratic example (cont’d)

conjugate gradients Background 16 / 34



orthogonality and conjugacy

Definition 1 (orthogonality)

a set of vectors {d1, d2, . . .} are orthogonal, that is di ⊥ dj , if 〈di , dj〉 = 0
for i 6= j

Definition 2 (conjugacy)

a set of vectors {d1, d2, . . .} are conjugate (orthogonal in a geometry
induced by some A � 0,A = A>) if 〈di , dj〉A := 〈di , Adj〉 = 0 for i 6= j

[1]

conjugate gradients Background 17 / 34



orthogonality and conjugacy
Definition 1 (orthogonality)

a set of vectors {d1, d2, . . .} are orthogonal, that is di ⊥ dj , if 〈di , dj〉 = 0
for i 6= j

Definition 2 (conjugacy)

a set of vectors {d1, d2, . . .} are conjugate (orthogonal in a geometry
induced by some A � 0,A = A>) if 〈di , dj〉A := 〈di , Adj〉 = 0 for i 6= j

[1]

conjugate gradients Background 17 / 34



orthogonality and conjugacy
Definition 1 (orthogonality)

a set of vectors {d1, d2, . . .} are orthogonal, that is di ⊥ dj , if 〈di , dj〉 = 0
for i 6= j

Definition 2 (conjugacy)

a set of vectors {d1, d2, . . .} are conjugate (orthogonal in a geometry
induced by some A � 0,A = A>) if 〈di , dj〉A := 〈di , Adj〉 = 0 for i 6= j

[1]

conjugate gradients Background 17 / 34



orthogonality and conjugacy
Definition 1 (orthogonality)

a set of vectors {d1, d2, . . .} are orthogonal, that is di ⊥ dj , if 〈di , dj〉 = 0
for i 6= j

Definition 2 (conjugacy)

a set of vectors {d1, d2, . . .} are conjugate (orthogonal in a geometry
induced by some A � 0,A = A>) if 〈di , dj〉A := 〈di , Adj〉 = 0 for i 6= j

[1]

conjugate gradients Background 17 / 34



revisting coordinate descent (diagonal)

Assumption

A is diagonal and D = [d0, d1, . . . , dn−1] ∈ Rn×n contains n orthogonal
directions; note that the principal axes of f ’s contours will align with di

reconstruct the error

define error e := Dα with α = [α0, . . . , αn−1]>,

f (x + e) = f (x) +
∑
i,j

xiAi,jej + 1
2

∑
i,j

diAi,jej −
∑
i

biei (5)

= f (x) +
∑
i,j

xiAi,j

∑
k

αkdk,j

+ 1
2

∑
i,j

∑
k

αkdk,iAi,j

∑
k

αkdk,j −
∑
i

bi
∑
k

αkdk,i
(6)

= f (x) +
∑
k

[
1
2α

2
kd
>
k Adk + αkx

>Adk − αkb
>dk

]
(7)

so finally minα f (x + e) = f (x) +
∑n−1

k=0 {minαk
f (αkdk)}

conjugate gradients Background 18 / 34



revisting coordinate descent (diagonal)
Assumption

A is diagonal and D = [d0, d1, . . . , dn−1] ∈ Rn×n contains n orthogonal
directions; note that the principal axes of f ’s contours will align with di

reconstruct the error

define error e := Dα with α = [α0, . . . , αn−1]>,

f (x + e) = f (x) +
∑
i,j

xiAi,jej + 1
2

∑
i,j

diAi,jej −
∑
i

biei (5)

= f (x) +
∑
i,j

xiAi,j

∑
k

αkdk,j

+ 1
2

∑
i,j

∑
k

αkdk,iAi,j

∑
k

αkdk,j −
∑
i

bi
∑
k

αkdk,i
(6)

= f (x) +
∑
k

[
1
2α

2
kd
>
k Adk + αkx

>Adk − αkb
>dk

]
(7)

so finally minα f (x + e) = f (x) +
∑n−1

k=0 {minαk
f (αkdk)}

conjugate gradients Background 18 / 34



revisting coordinate descent (diagonal)
Assumption

A is diagonal and D = [d0, d1, . . . , dn−1] ∈ Rn×n contains n orthogonal
directions; note that the principal axes of f ’s contours will align with di

reconstruct the error

define error e := Dα with α = [α0, . . . , αn−1]>,

f (x + e) = f (x) +
∑
i,j

xiAi,jej + 1
2

∑
i,j

diAi,jej −
∑
i

biei (5)

= f (x) +
∑
i,j

xiAi,j

∑
k

αkdk,j

+ 1
2

∑
i,j

∑
k

αkdk,iAi,j

∑
k

αkdk,j −
∑
i

bi
∑
k

αkdk,i
(6)

= f (x) +
∑
k

[
1
2α

2
kd
>
k Adk + αkx

>Adk − αkb
>dk

]
(7)

so finally minα f (x + e) = f (x) +
∑n−1

k=0 {minαk
f (αkdk)}

conjugate gradients Background 18 / 34



revisiting coordinate descent (non-diagonal, I)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 1: coordinate descent in D−1 space

I how can we convert to the diagonal case?
I change coordinates so that x̂ = D−1x , and rewrite Eq. (1)

f (x̂) = 1
2 x̂
>(D>AD)x̂ − (D>b)>x̂ (8)

I by conjugacy, D>AD is diagonal!
I proceed by solving n 1-dimensional minimization problems along

each coordinate direction of x̂ [2]

conjugate gradients Background 19 / 34



revisiting coordinate descent (non-diagonal, I)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 1: coordinate descent in D−1 space

I how can we convert to the diagonal case?
I change coordinates so that x̂ = D−1x , and rewrite Eq. (1)

f (x̂) = 1
2 x̂
>(D>AD)x̂ − (D>b)>x̂ (8)

I by conjugacy, D>AD is diagonal!
I proceed by solving n 1-dimensional minimization problems along

each coordinate direction of x̂ [2]

conjugate gradients Background 19 / 34



revisiting coordinate descent (non-diagonal, I)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 1: coordinate descent in D−1 space

I how can we convert to the diagonal case?

I change coordinates so that x̂ = D−1x , and rewrite Eq. (1)

f (x̂) = 1
2 x̂
>(D>AD)x̂ − (D>b)>x̂ (8)

I by conjugacy, D>AD is diagonal!
I proceed by solving n 1-dimensional minimization problems along

each coordinate direction of x̂ [2]

conjugate gradients Background 19 / 34



revisiting coordinate descent (non-diagonal, I)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 1: coordinate descent in D−1 space

I how can we convert to the diagonal case?
I change coordinates so that x̂ = D−1x , and rewrite Eq. (1)

f (x̂) = 1
2 x̂
>(D>AD)x̂ − (D>b)>x̂ (8)

I by conjugacy, D>AD is diagonal!
I proceed by solving n 1-dimensional minimization problems along

each coordinate direction of x̂ [2]

conjugate gradients Background 19 / 34



revisiting coordinate descent (non-diagonal, I)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 1: coordinate descent in D−1 space

I how can we convert to the diagonal case?
I change coordinates so that x̂ = D−1x , and rewrite Eq. (1)

f (x̂) = 1
2 x̂
>(D>AD)x̂ − (D>b)>x̂ (8)

I by conjugacy, D>AD is diagonal!

I proceed by solving n 1-dimensional minimization problems along
each coordinate direction of x̂ [2]

conjugate gradients Background 19 / 34



revisiting coordinate descent (non-diagonal, I)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 1: coordinate descent in D−1 space

I how can we convert to the diagonal case?
I change coordinates so that x̂ = D−1x , and rewrite Eq. (1)

f (x̂) = 1
2 x̂
>(D>AD)x̂ − (D>b)>x̂ (8)

I by conjugacy, D>AD is diagonal!
I proceed by solving n 1-dimensional minimization problems along

each coordinate direction of x̂ [2]

conjugate gradients Background 19 / 34



revisiting coordinate descent (non-diagonal, II)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 2: line search simplification

I rewrite Eq. (5) in vector form as

f (x + e) = f (x) + 1
2α
>D>ADα + (Dα)>(Ax)− (Dα)>b (9)

= f (x) + 1
2α
>D>ADα + (Dα)>(Ax − b) (10)

so that α? = arg minα f (x + Dα) satisfies

α? = (D>AD)−1D>(Ax − b) (11)

conjugate gradients Background 20 / 34



revisiting coordinate descent (non-diagonal, II)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 2: line search simplification

I rewrite Eq. (5) in vector form as

f (x + e) = f (x) + 1
2α
>D>ADα + (Dα)>(Ax)− (Dα)>b (9)

= f (x) + 1
2α
>D>ADα + (Dα)>(Ax − b) (10)

so that α? = arg minα f (x + Dα) satisfies

α? = (D>AD)−1D>(Ax − b) (11)

conjugate gradients Background 20 / 34



revisiting coordinate descent (non-diagonal, II)

Assumption

suppose that D contains n A-conjugate vectors

interpretation 2: line search simplification

I rewrite Eq. (5) in vector form as

f (x + e) = f (x) + 1
2α
>D>ADα + (Dα)>(Ax)− (Dα)>b (9)

= f (x) + 1
2α
>D>ADα + (Dα)>(Ax − b) (10)

so that α? = arg minα f (x + Dα) satisfies

α? = (D>AD)−1D>(Ax − b) (11)

conjugate gradients Background 20 / 34



revisiting coordinate descent (non-diagonal, III)

takeaway: k-optimality

I define the subspace Mk := x0 + span{d0, d1, . . . , dk}
I after k steps, we have minimized the error as much as possible in

the subspace Mk ⊂ Rn

I xk = arg minx∈Mk
f (x)

I hence gradients ∇x f (xk+i ) ⊥ Mk for i > 0
I xk is optimal, so directional derivative is zero
I 〈∇x f (xk), v〉 = 0, ∀v ∈ Mk

conjugate gradients Background 21 / 34



Outline

Overview

Background

Computation

Error (convergence) analysis

Application

conjugate gradients Computation 22 / 34



getting conjugate directions

modify Gram-Schmidt process for orthogonality wrt A

I start with gradients gk := ∇x f (xk) at each step as the
orthogonalization vectors

dk+1 = gk+1 − projMk
(gk+1) = gk+1 −

k∑
i=0

〈gk+1, dj〉A
〈dj , dj〉A

dj (12)

I computationally intensive and G-S is not numerically stable

goal

simplify projMk
(gk+1) as much as possible [3]

conjugate gradients Computation 23 / 34



getting conjugate directions

modify Gram-Schmidt process for orthogonality wrt A

I start with gradients gk := ∇x f (xk) at each step as the
orthogonalization vectors

dk+1 = gk+1 − projMk
(gk+1) = gk+1 −

k∑
i=0

〈gk+1, dj〉A
〈dj , dj〉A

dj (12)

I computationally intensive and G-S is not numerically stable

goal

simplify projMk
(gk+1) as much as possible [3]

conjugate gradients Computation 23 / 34



getting conjugate directions

modify Gram-Schmidt process for orthogonality wrt A

I start with gradients gk := ∇x f (xk) at each step as the
orthogonalization vectors

dk+1 = gk+1 − projMk
(gk+1) = gk+1 −

k∑
i=0

〈gk+1, dj〉A
〈dj , dj〉A

dj (12)

I computationally intensive and G-S is not numerically stable

goal

simplify projMk
(gk+1) as much as possible [3]

conjugate gradients Computation 23 / 34



conjugate gradients procedure (simplification I)

simplification I: projection summation

1. solve for dk in terms of the quantities xk , xk+1, αk so

dk =
1

αk
(xk+1 − xk) (13)

2. multiply by A (and cancel b terms)

Adk =
1

αk
A(xk+1 − xk) =

1

αk
A(gk+1 − gk) (14)

3. use k-optimality
I orthogonality of gradients gk+1 ⊥ Mk =⇒ gk+1 ⊥ {g0, g1, . . . , gk}

since span{g0, g1, . . . , gk} = Mk (taking d0 = g0)

4. conclude

dk+1 = gk+1 −
〈gk+1, (gk+1 − gk)〉
〈dk , (gk+1 − gk〉

dk = βkdk (15)

conjugate gradients Computation 24 / 34



conjugate gradients procedure (simplification I)

simplification I: projection summation

1. solve for dk in terms of the quantities xk , xk+1, αk so

dk =
1

αk
(xk+1 − xk) (13)

2. multiply by A (and cancel b terms)

Adk =
1

αk
A(xk+1 − xk) =

1

αk
A(gk+1 − gk) (14)

3. use k-optimality
I orthogonality of gradients gk+1 ⊥ Mk =⇒ gk+1 ⊥ {g0, g1, . . . , gk}

since span{g0, g1, . . . , gk} = Mk (taking d0 = g0)

4. conclude

dk+1 = gk+1 −
〈gk+1, (gk+1 − gk)〉
〈dk , (gk+1 − gk〉

dk = βkdk (15)

conjugate gradients Computation 24 / 34



conjugate gradients procedure (simplification I)

simplification I: projection summation

1. solve for dk in terms of the quantities xk , xk+1, αk so

dk =
1

αk
(xk+1 − xk) (13)

2. multiply by A (and cancel b terms)

Adk =
1

αk
A(xk+1 − xk) =

1

αk
A(gk+1 − gk) (14)

3. use k-optimality
I orthogonality of gradients gk+1 ⊥ Mk =⇒ gk+1 ⊥ {g0, g1, . . . , gk}

since span{g0, g1, . . . , gk} = Mk (taking d0 = g0)

4. conclude

dk+1 = gk+1 −
〈gk+1, (gk+1 − gk)〉
〈dk , (gk+1 − gk〉

dk = βkdk (15)

conjugate gradients Computation 24 / 34



conjugate gradients procedure (simplification I)

simplification I: projection summation

1. solve for dk in terms of the quantities xk , xk+1, αk so

dk =
1

αk
(xk+1 − xk) (13)

2. multiply by A (and cancel b terms)

Adk =
1

αk
A(xk+1 − xk) =

1

αk
A(gk+1 − gk) (14)

3. use k-optimality
I orthogonality of gradients gk+1 ⊥ Mk =⇒ gk+1 ⊥ {g0, g1, . . . , gk}

since span{g0, g1, . . . , gk} = Mk (taking d0 = g0)

4. conclude

dk+1 = gk+1 −
〈gk+1, (gk+1 − gk)〉
〈dk , (gk+1 − gk〉

dk = βkdk (15)

conjugate gradients Computation 24 / 34



conjugate gradients procedure (simplification I)

simplification I: projection summation

1. solve for dk in terms of the quantities xk , xk+1, αk so

dk =
1

αk
(xk+1 − xk) (13)

2. multiply by A (and cancel b terms)

Adk =
1

αk
A(xk+1 − xk) =

1

αk
A(gk+1 − gk) (14)

3. use k-optimality
I orthogonality of gradients gk+1 ⊥ Mk =⇒ gk+1 ⊥ {g0, g1, . . . , gk}

since span{g0, g1, . . . , gk} = Mk (taking d0 = g0)

4. conclude

dk+1 = gk+1 −
〈gk+1, (gk+1 − gk)〉
〈dk , (gk+1 − gk〉

dk = βkdk (15)

conjugate gradients Computation 24 / 34



conjugate gradients procedure (simplification II)

simplification II: βk

1. gk+1 ⊥ dk and gk+1 ⊥ gk by k-optimality so that

βk =
〈gk+1, gk+1〉
〈dk , gk〉

(16)

2. expand dk = gk − βk−1dk−1 and dk ⊥ gk−1 by k-optimality so that

βk =
〈gk+1, gk+1〉
〈gk , gk〉

(17)

conjugate gradients Computation 25 / 34



conjugate gradients procedure (simplification II)

simplification II: βk

1. gk+1 ⊥ dk and gk+1 ⊥ gk by k-optimality so that

βk =
〈gk+1, gk+1〉
〈dk , gk〉

(16)

2. expand dk = gk − βk−1dk−1 and dk ⊥ gk−1 by k-optimality so that

βk =
〈gk+1, gk+1〉
〈gk , gk〉

(17)

conjugate gradients Computation 25 / 34



conjugate gradients procedure (simplification II)

simplification II: βk

1. gk+1 ⊥ dk and gk+1 ⊥ gk by k-optimality so that

βk =
〈gk+1, gk+1〉
〈dk , gk〉

(16)

2. expand dk = gk − βk−1dk−1 and dk ⊥ gk−1 by k-optimality so that

βk =
〈gk+1, gk+1〉
〈gk , gk〉

(17)

conjugate gradients Computation 25 / 34



conjugate gradients procedure

g0 ← Ax0 − b; d0 ← −g0; k ← 0

repeat

αk ←
gT
k gk

dT
k Adk

xk+1 ← xk + αkdk

gk+1 ← gk − αkAdk

if gk+1 ≤ tolerance, then exit, else

βk ←
gT
k+1gk+1

gT
k gk

dk+1 ← −gk+1 + βkdk

k ← k + 1

end repeat

return xk+1

[4]

conjugate gradients Computation 26 / 34



Outline

Overview

Background

Computation

Error (convergence) analysis

Application

conjugate gradients Error (convergence) analysis 27 / 34



NOPE!

but nice connections to finding roots of polynomials

conjugate gradients Error (convergence) analysis 28 / 34



Outline

Overview

Background

Computation

Error (convergence) analysis

Application

conjugate gradients Application 29 / 34



simulating tropical cyclones [5]

conjugate gradients Application 30 / 34



optimal control problem

consider the following optimal control problem

minimize
u∈C 1

J(u) =

∫ T

0

‖u‖2Adt (18a)

s.t. ẋ(t) = b(x) + u(t) (18b)

x(0) = x0 (18c)

Φ(x(T )) = 0 (18d)

and discretize into

minimize
{uk}Nk=1

J(u) = ∆t
N∑

k=1

[
u>k Auk

]
(19a)

s.t. xk+1 = b(xk)∆t + uk∆t, k ∈ [0,N − 1] (19b)

x1 = x̄ (19c)

Φ(xN) = 0 (19d)

conjugate gradients Application 31 / 34



optimal control problem

consider the following optimal control problem

minimize
u∈C 1

J(u) =

∫ T

0

‖u‖2Adt (18a)

s.t. ẋ(t) = b(x) + u(t) (18b)

x(0) = x0 (18c)

Φ(x(T )) = 0 (18d)

and discretize into

minimize
{uk}Nk=1

J(u) = ∆t
N∑

k=1

[
u>k Auk

]
(19a)

s.t. xk+1 = b(xk)∆t + uk∆t, k ∈ [0,N − 1] (19b)

x1 = x̄ (19c)

Φ(xN) = 0 (19d)

conjugate gradients Application 31 / 34



optimal control problem

consider the following optimal control problem

minimize
u∈C 1

J(u) =

∫ T

0

‖u‖2Adt (18a)

s.t. ẋ(t) = b(x) + u(t) (18b)

x(0) = x0 (18c)

Φ(x(T )) = 0 (18d)

and discretize into

minimize
{uk}Nk=1

J(u) = ∆t
N∑

k=1

[
u>k Auk

]
(19a)

s.t. xk+1 = b(xk)∆t + uk∆t, k ∈ [0,N − 1] (19b)

x1 = x̄ (19c)

Φ(xN) = 0 (19d)

conjugate gradients Application 31 / 34



coding example

CG in Julia, see: cg-pres/ repo

conjugate gradients Application 32 / 34

https://github.com/jacob-roth


coding results

conjugate gradients Application 33 / 34



References I

[1] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” tech. rep., USA, 1994.

[2] J. Nocedal and S. J. Wright, Numerical Optimization.
New York, NY, USA: Springer, second ed., 2006.

[3] M. Zibulevsky, “Conjugate gradient notes.”

[4] Wikipedia, “Conjugate gradient method.”

[5] D. A. Plotkin, R. J. Webber, M. E. O’Neill, J. Weare, and D. S.
Abbot, “Maximizing Simulated Tropical Cyclone Intensity With
Action Minimization,” Journal of Advances in Modeling Earth
Systems, vol. 11, no. 4, pp. 863–891, 2019.

conjugate gradients Application 34 / 34


	Overview
	Background
	Computation
	Error (convergence) analysis
	Application

