conjugate gradients

intuition and application

jake roth

February 27, 2020

Outline

[Overview](#page-2-0)

[Background](#page-16-0)

[Computation](#page-44-0)

[Error \(convergence\) analysis](#page-57-0)

[Application](#page-59-0)

Outline

[Overview](#page-2-0)

[Background](#page-16-0)

[Computation](#page-44-0)

[Error \(convergence\) analysis](#page-57-0)

[Application](#page-59-0)

$$
Ax = b, \quad A \succ 0, \quad A = A^{\top}
$$

lifecycle of an optimization problem

consider min_x $f(x)$

- ► build local model $m_k(d_k) = \langle \nabla_x f(x_k), d_k \rangle + \frac{1}{2} \langle d_k, \hat{H}(x_k) d_k \rangle$
- \blacktriangleright near a solution
	- ► expect $\hat{H}(x_k) \succ 0$
	- ► take Newton step $\hat{H}(x_k) d_k = -\nabla_x f(x_k)$
- boils down to solving $Ax = b$ for $A \succ 0, A = A^{\top}$

lifecycle of an optimization problem

consider min_x $f(x)$

- ► build local model $m_k(d_k) = \langle \nabla_x f(x_k), d_k \rangle + \frac{1}{2} \langle d_k, \hat{H}(x_k) d_k \rangle$
- \blacktriangleright near a solution
	- Expect $\hat{H}(x_k) > 0$
	- ► take Newton step $\hat{H}(x_k) d_k = -\nabla_x f(x_k)$
- boils down to solving $Ax = b$ for $A \succ 0, A = A^{\top}$

other examples

- \blacktriangleright least squares
	- ► linear: $||y Ax||_2^2 \implies x^* = (A^{\top}A)^{-1}A^{\top}y$
	- ► nonlinear: $||y f(x)||_2^2 \implies \Delta x = (J^{\top} J)^{-1} J^{\top} y$
- rootfinding: $f(x) = 0$; interpret as min_x $F(x)$ for $f = \nabla F$

lifecycle of an optimization problem

consider min_x $f(x)$

- ► build local model $m_k(d_k) = \langle \nabla_x f(x_k), d_k \rangle + \frac{1}{2} \langle d_k, \hat{H}(x_k) d_k \rangle$
- \blacktriangleright near a solution
	- **Expect** $\hat{H}(x_k) > 0$
	- ► take Newton step $\hat{H}(x_k) d_k = -\nabla_x f(x_k)$
- boils down to solving $Ax = b$ for $A \succ 0, A = A^{\top}$

other examples

- \blacktriangleright least squares
	- ► linear: $||y Ax||_2^2 \implies x^* = (A^{\top}A)^{-1}A^{\top}y$
	- ► nonlinear: $||y f(x)||_2^2 \implies \Delta x = (J^{\top} J)^{-1} J^{\top} y$
- rootfinding: $f(x) = 0$; interpret as min_x $F(x)$ for $f = \nabla F$

CG...from where?

- \triangleright presented with algorithm and prove properties about algorithm
- I but where does CG come from?

ongoing quadratic example

ongoing quadratic example

optimization

consider the unconstrained convex quadratic function

$$
\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) := \frac{1}{2} x^\top A x - b^\top x \tag{1}
$$
\n
$$
\text{where } A \succ 0, A = A^\top
$$

ongoing quadratic example

optimization

consider the unconstrained convex quadratic function

$$
\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) := \frac{1}{2} x^\top A x - b^\top x \tag{1}
$$
\n
$$
\text{where } A \succ 0, A = A^\top
$$

linear system

solution to Eq. (1) solves $Ax = b$

$$
\nabla_x f(x) = 0 \iff Ax - b = 0 \tag{2}
$$

because of convexity in f due to structure of A

optimization framework

- \blacktriangleright goal: $f(x_{k+1}) < f(x_k)$
- ▶ Newton method: Isaac Newton, 1600s
- ▶ gradient descent: Augustin-Louis Cauchy, 1850s
- \triangleright nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

optimization framework

- \blacktriangleright goal: $f(x_{k+1}) < f(x_k)$
- **INEWTON METHOD: Isaac Newton, 1600s**
- ▶ gradient descent: Augustin-Louis Cauchy, 1850s
- \triangleright nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

linear systems framework

- \blacktriangleright Jacobi method (diagonally dominant $Ax = b$): Carl Gustav Jacob Jacobi, 1850s
- \triangleright modified Richardson method (fixed step-size gradient descent $Ax = b$: Lewis Richardson, 1910)
- \blacktriangleright Krylov methods
	- G (symmetric, positive-definite $Ax = b$): Magnus Hestenes and Eduard Stiefel, 1950s
	- GMRES (nonsymmetric $Ax = b$): 1950s

optimization framework

- \blacktriangleright goal: $f(x_{k+1}) < f(x_k)$
- **INEWTON METHOD: Isaac Newton, 1600s**
- ▶ gradient descent: Augustin-Louis Cauchy, 1850s
- \triangleright nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, 1960s

linear systems framework

- **In** Jacobi method (diagonally dominant $Ax = b$): Carl Gustav Jacob Jacobi, 1850s
- \triangleright modified Richardson method (fixed step-size gradient descent $Ax = b$: Lewis Richardson, 1910)
- \blacktriangleright Krylov methods
	- G (symmetric, positive-definite $Ax = b$): Magnus Hestenes and Eduard Stiefel, 1950s
	- GMRES (nonsymmetric $Ax = b$): 1950s

interpret CG from optimization and linear systems perspectives

optimization framework

- \blacktriangleright goal: $f(x_{k+1}) < f(x_k)$
- **INEWTON METHOD: Isaac Newton, 1600s**
- ▶ gradient descent: Augustin-Louis Cauchy, 1850s
- nonlinear conjugate gradient: R. Fletcher and C.M. Reeves, $1960s$

linear systems framework

- **In** Jacobi method (diagonally dominant $Ax = b$): Carl Gustav Jacob Jacobi, 1850s
- \triangleright modified Richardson method (fixed step-size gradient descent $Ax = b$: Lewis Richardson, 1910)
- \blacktriangleright Krylov methods
	- G (symmetric, positive-definite $Ax = b$): Magnus Hestenes and Eduard Stiefel, 1950s
	- GMRES (nonsymmetric $Ax = b$): 1950s

interpret CG from optimization and linear systems perspectives

Outline

[Overview](#page-2-0)

[Background](#page-16-0)

[Computation](#page-44-0)

[Error \(convergence\) analysis](#page-57-0)

[Application](#page-59-0)

representing the error

representing the error

total error

from an initial guess x_0 dente the error

$$
e_0 \coloneqq x^* - x_0 \tag{3}
$$

where $x^* = \arg \min f(x)$ from Eq. (1)

representing the error

total error

from an initial guess x_0 dente the error

$$
e_0 \coloneqq x^* - x_0 \tag{3}
$$

where $x^* = \arg \min f(x)$ from Eq. (1)

reconstruct the error

- **If** suppose we have *n* linearly independent vectors $\{d_0, d_1, \ldots, d_{n-1}\}\$
- \triangleright can we build the error in one go?

$$
\blacktriangleright \ \mathsf{e}_0 = \sum_i \alpha_i \mathsf{d}_i \text{ for } \alpha_i \in \mathbb{R}
$$

- \blacktriangleright easy if we know α_i
- \blacktriangleright how can we find α_i ?

► can we build the error iteratively? $e_k = x^* - x_k$

linearly independent vectors

first-order iterative methods search direction

- \triangleright first-order methods use current (and possibly historical) gradient information to determine the next iterate
- update x_k with a step in direction d_k with

$$
d_k \in x_0 + \text{span}\{\nabla f(x_0), \nabla f(x_1), \nabla f(x_2), \ldots, \nabla f(x_k)\}\
$$
 (4)

- ► gradient descent (GD): $d_k = -\nabla f(x_k)$
- **►** steepest descent (SD): $d_k = -\nabla f(x_k)$
- ► coordinate descent (CD): $[d_k]_i = -[\nabla f(x_k)]_i$ if $i = \hat{i}$, 0 otherwise
- \triangleright conjugate gradient (CG): tbd

stepsize

- \blacktriangleright GD: $\alpha \leftarrow \bar{\alpha} \in \mathbb{R}_+$
- ► SD: $\alpha \leftarrow \alpha^*$ where $\alpha^* = \arg \min_{\alpha} f(x_k + \alpha d_k)$
- ► CD: $\alpha \leftarrow \alpha^*$ where $\alpha^* = \arg \min_{\alpha} f(x_k + \alpha d_k)$ (different d_k)
- \blacktriangleright CG: thd

orthogonality and conjugacy

orthogonality and conjugacy Definition 1 (orthogonality)

a set of vectors $\{d_1, d_2, \ldots\}$ are *orthogonal*, that is $d_i \perp d_j$, if $\langle d_i, \, d_j \rangle = 0$ for $i \neq j$

orthogonality and conjugacy Definition 1 (orthogonality)

a set of vectors $\{d_1, d_2, \ldots\}$ are *orthogonal*, that is $d_i \perp d_j$, if $\langle d_i, \, d_j \rangle = 0$ for $i \neq j$

Definition 2 (conjugacy)

a set of vectors $\{d_1, d_2, ...\}$ are *conjugate* (orthogonal in a geometry induced by some $A \succ 0, A = A^\top)$ if $\langle d_i, \, d_j \rangle_A \coloneqq \langle d_i, \, A d_j \rangle = 0$ for $i \neq j$

orthogonality and conjugacy Definition 1 (orthogonality)

a set of vectors $\{d_1, d_2, \ldots\}$ are *orthogonal*, that is $d_i \perp d_j$, if $\langle d_i, \, d_j \rangle = 0$ for $i \neq j$

Definition 2 (conjugacy)

a set of vectors $\{d_1, d_2, ...\}$ are *conjugate* (orthogonal in a geometry induced by some $A \succ 0, A = A^\top)$ if $\langle d_i, \, d_j \rangle_A \coloneqq \langle d_i, \, A d_j \rangle = 0$ for $i \neq j$

revisting coordinate descent (diagonal) **Assumption**

A is diagonal and $D = [d_0, d_1, \ldots, d_{n-1}] \in \mathbb{R}^{n \times n}$ contains n orthogonal directions; note that the principal axes of f's contours will align with d_i

revisting coordinate descent (diagonal) **Assumption**

A is diagonal and $D = [d_0, d_1, \ldots, d_{n-1}] \in \mathbb{R}^{n \times n}$ contains n orthogonal directions; note that the principal axes of f's contours will align with d_i

reconstruct the error

define error $e \coloneqq D\alpha$ with $\alpha = [\alpha_0, \, \dots, \, \alpha_{n-1}]^\top$,

$$
f(x+e) = f(x) + \sum_{i,j} x_i A_{i,j} e_j + \frac{1}{2} \sum_{i,j} d_i A_{i,j} e_j - \sum_i b_i e_i
$$
(5)

$$
= f(x) + \sum_{i,j} x_i A_{i,j} \sum_k \alpha_k d_{k,j}
$$

$$
+ \frac{1}{2} \sum_{i,j} \sum_k \alpha_k d_{k,i} A_{i,j} \sum_k \alpha_k d_{k,j} - \sum_i b_i \sum_k \alpha_k d_{k,i}
$$

$$
= f(x) + \sum_k \left[\frac{1}{2} \alpha_k^2 d_k^{\top} A d_k + \alpha_k x^{\top} A d_k - \alpha_k b^{\top} d_k \right]
$$
(7)

so finally min $_{\alpha}$ $f(x+e) = f(x) + \sum_{k=0}^{n-1} {\min_{\alpha_k} f(\alpha_k d_k)}$

Assumption

suppose that D contains n A-conjugate vectors

Assumption

suppose that D contains n A-conjugate vectors

interpretation $1:$ coordinate descent in D^{-1} space

 \blacktriangleright how can we convert to the diagonal case?

Assumption

suppose that D contains n A-conjugate vectors

interpretation $1:$ coordinate descent in D^{-1} space

- \blacktriangleright how can we convert to the diagonal case?
	- ► change coordinates so that $\hat{x} = D^{-1}x$, and rewrite Eq. (1)

$$
f(\hat{x}) = \frac{1}{2}\hat{x}^{\top}(D^{\top}AD)\hat{x} - (D^{\top}b)^{\top}\hat{x}
$$
 (8)

Assumption

suppose that D contains n A-conjugate vectors

interpretation $1:$ coordinate descent in D^{-1} space

 \triangleright how can we convert to the diagonal case? ► change coordinates so that $\hat{x} = D^{-1}x$, and rewrite Eq. (1)

$$
f(\hat{x}) = \frac{1}{2}\hat{x}^\top (D^\top A D)\hat{x} - (D^\top b)^\top \hat{x}
$$
 (8)

by conjugacy, $D^{\top}AD$ is diagonal!

Assumption

suppose that D contains n A-conjugate vectors

interpretation $1:$ coordinate descent in D^{-1} space

 \blacktriangleright how can we convert to the diagonal case? ► change coordinates so that $\hat{x} = D^{-1}x$, and rewrite Eq. (1)

$$
f(\hat{x}) = \frac{1}{2}\hat{x}^\top (D^\top A D)\hat{x} - (D^\top b)^\top \hat{x}
$$
 (8)

by conjugacy, $D^{\top}AD$ is diagonal!

r proceed by solving n 1-dimensional minimization problems along each coordinate direction of \hat{x} [\[2\]](#page-66-1)

Assumption

suppose that D contains n A-conjugate vectors

Assumption

suppose that D contains n A-conjugate vectors

interpretation 2: line search simplification

rewrite Eq. (5) in vector form as

$$
f(x+e) = f(x) + \frac{1}{2}\alpha^{\top}D^{\top}AD\alpha + (D\alpha)^{\top}(Ax) - (D\alpha)^{\top}b
$$
 (9)
= $f(x) + \frac{1}{2}\alpha^{\top}D^{\top}AD\alpha + (D\alpha)^{\top}(Ax - b)$ (10)

so that $\alpha^\star = \argmin_\alpha f(x + D\alpha)$ satisfies

$$
\alpha^* = (D^\top A D)^{-1} D^\top (A x - b)
$$
 (11)

takeaway: k-optimality

- **If** define the subspace $M_k := x_0 + \text{span}\{d_0, d_1, \ldots, d_k\}$
- \triangleright after k steps, we have minimized the error as much as possible in the subspace $M_k \subset \mathbb{R}^n$
- \blacktriangleright $x_k = \arg \min_{x \in M_k} f(x)$
- \triangleright hence gradients $\nabla_{x} f(x_{k+i}) \perp M_{k}$ for $i > 0$
	- \blacktriangleright x_k is optimal, so directional derivative is zero

$$
\blacktriangleright \langle \nabla_x f(x_k), v \rangle = 0, \quad \forall v \in M_k
$$

Outline

[Overview](#page-2-0)

[Background](#page-16-0)

[Computation](#page-44-0)

[Error \(convergence\) analysis](#page-57-0)

[Application](#page-59-0)

getting conjugate directions

getting conjugate directions

modify Gram-Schmidt process for orthogonality wrt A

► start with gradients $g_k := \nabla_x f(x_k)$ at each step as the orthogonalization vectors

$$
d_{k+1} = g_{k+1} - \text{proj}_{M_k}(g_{k+1}) = g_{k+1} - \sum_{i=0}^k \frac{\langle g_{k+1}, d_j \rangle_A}{\langle d_j, d_j \rangle_A} d_j \qquad (12)
$$

 \triangleright computationally intensive and G-S is not numerically stable

getting conjugate directions

modify Gram-Schmidt process for orthogonality wrt A

► start with gradients $g_k := \nabla_x f(x_k)$ at each step as the orthogonalization vectors

$$
d_{k+1} = g_{k+1} - \text{proj}_{M_k} (g_{k+1}) = g_{k+1} - \sum_{i=0}^k \frac{\langle g_{k+1}, d_j \rangle_A}{\langle d_j, d_j \rangle_A} d_j \qquad (12)
$$

 \triangleright computationally intensive and G-S is not numerically stable

goal

simplify $\operatorname{proj}_{M_k}\left(g_{k+1}\right)$ as much as possible $[3]$

1. solve for d_k in terms of the quantities x_k, x_{k+1}, α_k so

$$
d_k = \frac{1}{\alpha_k} (x_{k+1} - x_k)
$$
 (13)

1. solve for d_k in terms of the quantities x_k, x_{k+1}, α_k so

$$
d_k = \frac{1}{\alpha_k} (x_{k+1} - x_k)
$$
 (13)

2. multiply by A (and cancel b terms)

$$
Ad_k = \frac{1}{\alpha_k} A(x_{k+1} - x_k) = \frac{1}{\alpha_k} A(g_{k+1} - g_k)
$$
 (14)

1. solve for d_k in terms of the quantities x_k, x_{k+1}, α_k so

$$
d_k = \frac{1}{\alpha_k} (x_{k+1} - x_k) \tag{13}
$$

2. multiply by A (and cancel b terms)

$$
Ad_k = \frac{1}{\alpha_k} A(x_{k+1} - x_k) = \frac{1}{\alpha_k} A(g_{k+1} - g_k)
$$
 (14)

- 3. use k-optimality
	- \triangleright orthogonality of gradients $g_{k+1} \perp M_k \implies g_{k+1} \perp \{g_0, g_1, \ldots, g_k\}$ since span $\{g_0, g_1, \ldots, g_k\} = M_k$ (taking $d_0 = g_0$)

1. solve for d_k in terms of the quantities x_k, x_{k+1}, α_k so

$$
d_k = \frac{1}{\alpha_k} (x_{k+1} - x_k) \tag{13}
$$

2. multiply by A (and cancel b terms)

$$
Ad_k = \frac{1}{\alpha_k} A(x_{k+1} - x_k) = \frac{1}{\alpha_k} A(g_{k+1} - g_k)
$$
 (14)

- 3. use k-optimality
	- \triangleright orthogonality of gradients $g_{k+1} \perp M_k \implies g_{k+1} \perp \{g_0, g_1, \ldots, g_k\}$ since span $\{g_0, g_1, \ldots, g_k\} = M_k$ (taking $d_0 = g_0$)
- 4. conclude

$$
d_{k+1} = g_{k+1} - \frac{\langle g_{k+1}, (g_{k+1} - g_k) \rangle}{\langle d_k, (g_{k+1} - g_k) \rangle} d_k = \beta_k d_k \tag{15}
$$

conjugate gradients procedure (simplification II)

simplification II: β_k

conjugate gradients procedure (simplification II)

simplification II: β_k

1. $g_{k+1} \perp d_k$ and $g_{k+1} \perp g_k$ by k-optimality so that

$$
\beta_k = \frac{\langle g_{k+1}, g_{k+1} \rangle}{\langle d_k, g_k \rangle} \tag{16}
$$

conjugate gradients procedure (simplification II)

simplification II: β_k

1. $g_{k+1} \perp d_k$ and $g_{k+1} \perp g_k$ by k-optimality so that

$$
\beta_k = \frac{\langle g_{k+1}, g_{k+1} \rangle}{\langle d_k, g_k \rangle} \tag{16}
$$

2. expand $d_k = g_k - \beta_{k-1} d_{k-1}$ and $d_k \perp g_{k-1}$ by k-optimality so that

$$
\beta_k = \frac{\langle g_{k+1}, g_{k+1} \rangle}{\langle g_k, g_k \rangle} \tag{17}
$$

conjugate gradients procedure

$$
g_0 \leftarrow Ax_0 - b; \quad d_0 \leftarrow -g_0; \quad k \leftarrow 0
$$

repeat

$$
\alpha_k \leftarrow \frac{g_k^\top g_k}{d_k^\top A d_k}
$$

$$
x_{k+1} \leftarrow x_k + \alpha_k d_k
$$

$$
g_{k+1} \leftarrow g_k - \alpha_k A d_k
$$
if $g_{k+1} \leq$ tolerance, then exit, else

$$
\beta_k \leftarrow \frac{g_{k+1}^\top g_{k+1}}{g_k^\top g_k}
$$

$$
d_{k+1} \leftarrow -g_{k+1} + \beta_k d_k
$$

$$
k \leftarrow k + 1
$$

end repeat
return x_{k+1}

Outline

[Overview](#page-2-0)

[Background](#page-16-0)

[Computation](#page-44-0)

[Error \(convergence\) analysis](#page-57-0)

[Application](#page-59-0)

but nice connections to finding roots of polynomials

Outline

[Overview](#page-2-0)

[Background](#page-16-0)

[Computation](#page-44-0)

[Error \(convergence\) analysis](#page-57-0)

[Application](#page-59-0)

simulating tropical cyclones [\[5\]](#page-66-4)

optimal control problem

optimal control problem

consider the following optimal control problem

$$
\underset{u \in C^{1}}{\text{minimize}} \qquad \qquad J(u) = \int_{0}^{T} ||u||_{A}^{2} \mathrm{d}t \qquad \qquad \text{(18a)}
$$
\n
$$
\text{s.t.} \qquad \qquad \dot{x}(t) = b(x) + u(t) \qquad \qquad \text{(18b)}
$$

$$
\text{s.t.} \quad
$$

$$
\dot{x}(t) = b(x) + u(t) \tag{18b}
$$

$$
x(0)=x_0\tag{18c}
$$

$$
\Phi(x(T)) = 0 \tag{18d}
$$

optimal control problem

consider the following optimal control problem

$$
\underset{u \in C^{1}}{\text{minimize}} \qquad \qquad J(u) = \int_{0}^{T} ||u||_{A}^{2} \mathrm{d}t \qquad \qquad (18a)
$$

s.t. $\dot{x}(t) = b(x) + u(t)$ (18b)

$$
x(0)=x_0\qquad \qquad (18c)
$$

$$
\Phi(x(T)) = 0 \tag{18d}
$$

and discretize into

$$
\begin{array}{ll}\n\text{minimize} & J(u) = \Delta t \sum_{k=1}^{N} \left[u_k^{\top} A u_k \right] & \text{(19a)} \\
\text{s.t.} & x_{k+1} = b(x_k) \Delta t + u_k \Delta t, \quad k \in [0, N-1] & \text{(19b)} \\
& x_1 = \bar{x} & \text{(19c)} \\
& \Phi(x_N) = 0 & \text{(19d)}\n\end{array}
$$

coding example

CG in Julia, see: [cg-pres/](https://github.com/jacob-roth) repo

coding results

References I

- [1] J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain," tech. rep., USA, 1994.
- [2] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA: Springer, second ed., 2006.
- [3] M. Zibulevsky, "Conjugate gradient notes."
- [4] Wikipedia, "Conjugate gradient method."
- [5] D. A. Plotkin, R. J. Webber, M. E. O'Neill, J. Weare, and D. S. Abbot, "Maximizing Simulated Tropical Cyclone Intensity With Action Minimization," Journal of Advances in Modeling Earth Systems, vol. 11, no. 4, pp. 863–891, 2019.