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Introduction: Motivation DRCC Numerical Studies Conclusions Appendix

Motivation and Problem Summary

∗ Context

− Reservoir management
− Objective: convert water to electricity “optimally”
− Subject to: environmental constraints, unknown demand, uncertain rainfall
− Given: historical rainfall and demand data

∗ Goals

− Robustness to uncertainty
− Data-driven solution: make efficient use of independent samples ξ1, . . . , ξN
− Understand out-of-sample performance: new realizations ξ1, . . . , ξM

∗ Tools

− Robust optimization (RO)
− Stochastic optimization (SO)
− Data-driven optimization (DDO)
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Taxonomy of Uncertainty

Standard problem

minimize
x

f0(x)

subject to fi (x) ≤ 0, i = 1, . . . ,m
(1)

for control variable x ∈ Rn and functions fi : Rn → R

Uncertain parameters

Let f1(x) = Ax − b ≤ 0. “Uncertainty” ≈ problem data A and b may not be known fully.
Useful distinction: measurement error vs stochastic
Examples, assumptions:

(1) measurement error, but believe Aij ∈ [alo , ahi ] = ā, bi ∈ [blo , bhi ] = b̄,
{
ā, b̄
}

:= U

(2) unobserved process, but must have A(ω)x + b(ω) ≤ 0 for state ω ∈ Ω ⊆ Rd with dist’n D

(3) unobserved process, but believe [4] risk-measure DRO

(a) (E [ω]− µ̂)T Σ̂−1 (E [ω]− µ̂) ≤ γmean

(b) E
[
(ω − µ̂) (ω − µ̂)T

]
� γcov Σ̂

(c) E[1{ω ∈ Ω}] = 1, Ω closed, convex
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Robust Optimization

Standard formulation: “optimization for the worst set of parameters”

minimize
x

{
sup
u∈U

f0(x , u) : fi (x , u) ≤ 0, i = 1, . . . ,m, ∀u ∈ U
}

(2)

for control variable x ∈ Rn, uncertainty set U 3 u for parameter element u, and functions
fi : Rn × Rd → R; cardinality of U may be infinite

Robust counterpart

minimize
x,t

{t : f0(x , u) ≤ t, fi (x , u) ≤ 0, i = 1, . . . ,m, ∀u ∈ U}

minimize
x,t

{
t : f0(x , u) ≤ t, sup

u∈U
{fi (x , u)} ≤ 0, i = 1, . . . ,m

} (3)

Properties

+ Safe: Immunize against entire uncertainty set

+ Tractable (often): for linear, SOCP, and SDP problems, certain polyhedral sets can preserve
the structure of the problem [3]

+ One-off interpretable: no reliance on frequentist notion of probability

− Overly conservative (often): every uncertainty realization

− How to make explicit uncertainty set assumptions?

− Semi-infinite constraints (but can use duality to convert ∀ to ∃)
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Stochastic Optimization

General formulation

minimize
x

F0(x , ω) =

∫
Ω
f0(x , ω) dD(ω)

subject to Fi (x , ω) =

∫
Ω
fi (x , ω) dD(ω) ≤ 0, i = 1, . . . ,m

(4)

for control variable x ∈ Rn, uncertainty parameter ω ∈ Rd , distribution function D, and
constraint functions fi : Rn × Rd → R [6]

Standard formulation (chance-constraint)

minimize
x

{f0(x , ω) : P [fi (x , ω) ≤ 0] ≥ α, ω ∈ Ω, i = 1, . . . ,m} (5)

Properties

+ Expressive: CCs operate in the space the decisionmaker can make intuitive sense of

+ Natural: connection to risk measures

− Expensive: quadrature, simulations for integrals?, less-nice distributions?
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Example

LP: x , c, ai ∈ Rn

minimize
x

cT x subject to aTi x ≤ bi , i = 1, . . . ,m (6)

Uncertain LP: RO

Let U = {{Ei}mi=1}, i.e., b, c known, and Ei = {āi + Piu : ‖u‖2 ≤ 1}, āi ∈ Rn,Pi ∈ Rn×n

minimize
x

cT x subject to aTi x ≤ bi , ∀ai ∈ Ei , i = 1, . . . ,m

minimize
x

cT x subject to āTi x + ‖PT
i x‖2 ≤ bi , i = 1, . . . ,m

(7)

Uncertain LP: SO

Let ai ∼ N(āi ,Σi ), i.e., fi (x , ω) = aTi x − bi with D = Φ

minimize
x

cT x subject to P
[
aTi x ≤ bi

]
≥ η, i = 1, . . . ,m

minimize
x

cT x subject to āTi x + Φ−1(η) ‖Σ1/2
i x‖2 ≤ bi , i = 1, . . . ,m

(8)
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Comparison

Similarities

∗ SO → RO: use information about stochastic nature of uncertainty to build U
∗ RO → SO: immunize against all u ∈ U to ensure probabilistic coverage in chance-constraint

setting

Differences

∗ “Expressive vs tractable” tradeoff

∗ RO: probability is not part of the formulation

∗ SO: immunization only for certain outcomes

Beyond

∗ Beyond RO: “tighten” U through introducing probabilistic notions

∗ Beyond SO: generalize by introducing “ambiguity” into chance-constraints

∗ Constraint form: supu∈U{fi (x , u)} ≤ 0 vs P [{fi (x , ω)} ≤ 0] ≥ α
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∗ Beyond SO: generalize by introducing “ambiguity” into chance-constraints

∗ Constraint form: supu∈U{fi (x , u)} ≤ 0 vs P [{fi (x , ω)} ≤ 0] ≥ α
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∗ Finite sample S
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∗ SO: estimate D from S (estimate distribution)

Useful tools

∗ Risk-measure literature

∗ Concentration of measure

Interpretation
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Risk measures

Definition (Risk measure)

A risk measure ρ : X → R, for X the space of random variables, satisfies

∗ translation invariance: ρ(X ) = X if X is const

∗ positive homogeneity: ρ(tX ) = tρ(X ) for t > 0

∗ normalization: ρ(0) = 0

∗ monotonicity: if X1 ≤ X2 almost surely,
then ρ(X1) ≤ ρ(X2)

Definition (VaR, [13])

Let α ∈ (0, 1) be a given confidence level and Zx be a random variable characterizing the “loss”
in a particular system under decision x . Then for cdf FZx

VaRα [Zx ] := F−Zx
(1− α) = inf{t : P [Zx > t] ≤ α}

Definition (CVaR, [13])

Under the same scenario as VaR, define (
∗
= for smooth cdf FZx )

CVaRα [Zx ] := inf
t∈R
{t + α−1E [[Zx − t]+]} ∗= α−1

∫ 1

1−α
VaR1−s [Zx ] ds
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Coherent risk measures

Definition (Coherent risk measure)

If the problem outcome is convex with respect to the decision, i.e., f (x) convex in x , then a risk
measure is called “coherent” if ρ(f (x)) is convex in x [12]. Coherent risk measures satisfy the
additional property

∗ subadditivity: ρ(X1 + X2) ≤ ρ(X1) + ρ(X2)

With positive homogeneity & λ ∈ [0, 1], this gives: ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2)

Theorem (Representation of coherent risk measure, [3])

A risk measure ρ is coherent if and only if there exists a family of probability measures Q such that

ρ(X ) = sup
q∈Q

Eq [X ]

for random variables X in the space of almost surely bounded random variables.

CVaR properties

∗ Convex (linearity of expectation, convexity of [x − c]+) and hence coherent

∗ CVaR ≥ VaR (more extreme)

∗ CVaR is a weighted average of VaR and conditional expectation of losses exceeding VaR;
NOT “robust”
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Risk Measures for DDO

Hypothetical: portfolio optimization

∗ Goal: For decision weights x ∈ Rn and RV returns r , ensure that wealth xT r ≥ η
∗ Given: [r1, . . . , rm] = R ∈ Rn×m historical returns

RO-inspired models [1]

∗ Scenarios (implicit CVaR): define Q = conv{q1, . . . , ql} over “scenarios” q1, q2, . . . , ql for
qi ∈ ∆n simplex and build U = conv{Rq : q ∈ Q} so Q generates a coherent risk measure
with sup over Q
∗ Explicit CVaR: CVaR defines {Q = q ∈ ∆n : qi ≤ pi/α} for pi = 1/n and α = j/n, j ∈ Z+

SO-inspired models

∗ “Robust CVaR”: minimization with ambiguity in mean and covariance [4]

∗ Ambiguous chance-constraints: VaR constraints with unknown distribution risk-measure DRO

∗ Scenarios: estimate empirical distribution robustly (e.g., factor models [7])
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Concentration of Measure for DDO

Theorem (Hoeffding, [9])

Let X1, . . . ,Xn be independent, bounded random variables such that Xi ∈ [ai , bi ] ∀i = 1, . . . , n.
Then we have

P

(
1

n

n∑
i=1

Xi − E

[
1

n

n∑
i=1

Xi

]
≥ δ
)
≤ exp

(
−2n2δ2∑n

i=1(bi − ai )2

)

Application: inference for stochastic optimization

∗ Probabilistic bound on difference between empirical estimate of CVaR and true CVaR
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Formulation

Overview

∗ Worst case VaR constraint over family of probability distributions

∗ Distributionally robust stochastic program

∗ Bounded support assumption to use concentration inequality

Formulation

minimize f0(x)

subject to sup
F∈D

PF [f (x , ξ) ≤ 0] ≥ α

supp(D) ⊆ [a, b]

(9)

∗ Control variable: x ∈ Rd

∗ Randomness: ξ ∈ Rp

∗ Constraint function: f : Rd+p → R is convex in x

∗ Distribution family: f (x , ξ) ∼ F for F ∈ D with bounded support

∗ Certainty: α ∈ (0, 1)
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Tractable Approximation I

Goal: PF [f (x , ξ) ≤ 0] cdf may not be convex, so we seek a reformulation (and follow [11])

Bound the step-function

Rewrite VaR as 0/1 penalty for RV Zx := f (x , ξ)

VaRα [Zx ] ≤ 0 ⇐⇒ P[Zx ≤ 0] ≥ 1− α ⇐⇒ P[Zx > 0] ≤ α ⇐⇒ E[1{Zx > 0}] ≤ α

And bound with convex ψ : R→ R such that ψ(tz) ≥ 1{tz > 0} and t > 0

Optimize bound

Replace t = t−1

E[ψ(t−1Zx )] ≥ E[1{Zx > 0}]∀t > 0 =⇒ inf
t>0

{
E[ψ(t−1Zx )]

}
≥ E[1{Zx > 0}].

and note that ψ(z) = [1 + γz]+ for γ > 0 is smallest for functions such that ψ(0) = 1
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Tractable Approximation II

Ensure convexity

Write as perspective function (x , t) 7→ tψ(x/t) by multiplying by t

inf
t>0

{
t E[ψ(t−1Zx )]

}
≤ αt =⇒ E[1{Zx > 0}] ≤ α.

Rearrange as CVaR

Rearranging the inequality on the left, substituting ψ(z), replacing t′ = −t, and rescaling by α,
we have

inf
t>0

{
t E[ψ(t−1Zx )]− αt

}
= inf

t>0

{
t E[[1 + t−1Zx )]+]− αt

}
= inf

t>0
{E[[t + Zx ]+]− αt}

= inf
t′<0

{
E[[Zx − t′]+] + αt′

}
= inf

t′∈R

{
α−1E[[Zx − t′]+] + t′

}
= CVaRα [Zx ]
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Tractable Approximation III

Estimate generating function bound

Sample average approximation of ψ expectation (called generating function)

T = EF [[f (x , ξ) + t]+]

and an empirical estimate

T̂ =
1

N

N∑
i=1

[f (x , ξi ) + t]+

Bound out-of-sample performance

Using Hoeffding theorem 6, bound probability of “bad” set Ξ1

Ξ0 := {ξ ∈ Ξ : T (ξ)− T̂ (ξ) ≤ δ}

Ξ1 := Ω\Ξ0 = {ξ ∈ Ξ : T (ξ)− T̂ (ξ) > δ}

P(Ξ1) ≤ exp

(
−2Nδ2

Γ2

)
⇐⇒ 1− P(Ξ1) = P(Ξ0) ≥ 1− exp

(
−2Nδ2

Γ2

)
where Γ is support bound
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Tractable Approximation IV

Summary

T ≤ T̂ + δ ≤ t(1− α)

=⇒ inf
t>0

[EF [f (x , ξ) + t]+

t

]
≤

1
N

∑N
i=1[f (x , ξi ) + t]+ + δ

t
≤ 1− α

=⇒ PF (f (x , ξ) ≥ 0) ≤ 1− α
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Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Overview

Problem

Bi-objective problem:

maximize
x∈Rn

+

E
[
ξT x

]
= µT x & minimize

x∈Rn
+

R(x) subject to 1T x = 1 & xi ≥ 0, i = 1, . . . , n

(10)

Methods

∗ Markowitz: R(x) := xT Σx for empirical covariance Σ

∗ CC (VaR): R(x) := P(ξT x ≤ ρ) ≤ ε for specified return threshold ρ

∗ DRCC (approximate CVaR): R(x) := PF∈D(ξT x ≤ ρ) ≤ ε for specified return threshold ρ,
certainty parameter ε, and distributional set D

Metrics

∗ Empirical distribution for simulated returns

∗ Empirical distribution tail probability
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Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Simulation

Generate data from n hypothetical assets over m days according to the following:

∗ Normal

− true covariance matrix Σ0 ∼ IW (2n,
√
nI ) (inverse-Wishart)

− true mean µ0 ∼ N(0, I )
− n-dimensional asset return vector ξ ∼ N(µ0,Σ0)
− m observations ξ1, . . . , ξm ∼ N(µ0,Σ0)

∗ Beta: m observations from each of n assets distributed as Beta(1 + n − i , 1 + i) for
i = 1, . . . , n.

∗ Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn
from normalized uniform variates

Goal: ensure that we achieve in excess of ρ = 1/3× µ̂ for µ̂ the unconstrained, expected return
for new samples

22 / 37



Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Simulation

Generate data from n hypothetical assets over m days according to the following:

∗ Normal

− true covariance matrix Σ0 ∼ IW (2n,
√
nI ) (inverse-Wishart)

− true mean µ0 ∼ N(0, I )
− n-dimensional asset return vector ξ ∼ N(µ0,Σ0)
− m observations ξ1, . . . , ξm ∼ N(µ0,Σ0)

∗ Beta: m observations from each of n assets distributed as Beta(1 + n − i , 1 + i) for
i = 1, . . . , n.

∗ Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn
from normalized uniform variates

Goal: ensure that we achieve in excess of ρ = 1/3× µ̂ for µ̂ the unconstrained, expected return
for new samples

22 / 37



Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Simulation

Generate data from n hypothetical assets over m days according to the following:

∗ Normal

− true covariance matrix Σ0 ∼ IW (2n,
√
nI ) (inverse-Wishart)

− true mean µ0 ∼ N(0, I )
− n-dimensional asset return vector ξ ∼ N(µ0,Σ0)
− m observations ξ1, . . . , ξm ∼ N(µ0,Σ0)

∗ Beta: m observations from each of n assets distributed as Beta(1 + n − i , 1 + i) for
i = 1, . . . , n.

∗ Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn
from normalized uniform variates

Goal: ensure that we achieve in excess of ρ = 1/3× µ̂ for µ̂ the unconstrained, expected return
for new samples

22 / 37



Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Simulation

Generate data from n hypothetical assets over m days according to the following:

∗ Normal

− true covariance matrix Σ0 ∼ IW (2n,
√
nI ) (inverse-Wishart)

− true mean µ0 ∼ N(0, I )
− n-dimensional asset return vector ξ ∼ N(µ0,Σ0)
− m observations ξ1, . . . , ξm ∼ N(µ0,Σ0)

∗ Beta: m observations from each of n assets distributed as Beta(1 + n − i , 1 + i) for
i = 1, . . . , n.

∗ Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn
from normalized uniform variates

Goal: ensure that we achieve in excess of ρ = 1/3× µ̂ for µ̂ the unconstrained, expected return
for new samples

22 / 37



Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Simulation

Generate data from n hypothetical assets over m days according to the following:

∗ Normal

− true covariance matrix Σ0 ∼ IW (2n,
√
nI ) (inverse-Wishart)

− true mean µ0 ∼ N(0, I )
− n-dimensional asset return vector ξ ∼ N(µ0,Σ0)
− m observations ξ1, . . . , ξm ∼ N(µ0,Σ0)

∗ Beta: m observations from each of n assets distributed as Beta(1 + n − i , 1 + i) for
i = 1, . . . , n.

∗ Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn
from normalized uniform variates

Goal:

ensure that we achieve in excess of ρ = 1/3× µ̂ for µ̂ the unconstrained, expected return
for new samples

22 / 37



Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Simulation

Generate data from n hypothetical assets over m days according to the following:

∗ Normal

− true covariance matrix Σ0 ∼ IW (2n,
√
nI ) (inverse-Wishart)

− true mean µ0 ∼ N(0, I )
− n-dimensional asset return vector ξ ∼ N(µ0,Σ0)
− m observations ξ1, . . . , ξm ∼ N(µ0,Σ0)

∗ Beta: m observations from each of n assets distributed as Beta(1 + n − i , 1 + i) for
i = 1, . . . , n.

∗ Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn
from normalized uniform variates

Goal: ensure that we achieve in excess of ρ = 1/3× µ̂ for µ̂ the unconstrained, expected return
for new samples

22 / 37



Introduction DRCC Numerical Studies: Portfolio Optimization Conclusions Appendix

Results I
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normal: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.001, %solved: 1.0
cc:: P(r ): 0.001, %solved: 1.0
drcc:: P(r ): 0.001, %solved: 1.0
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normal: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.001, %solved: 1.0
cc:: P(r ): 0.001, %solved: 1.0
drcc:: P(r ): 0.001, %solved: 1.0

Figure: Normal simulation: we observe nearly identical performance from all three methods
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Results II
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beta: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.0, %solved: 0.99
cc:: P(r ): 0.0, %solved: 0.99
drcc:: P(r ): 0.0, %solved: 0.99
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beta: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.0, %solved: 0.99
cc:: P(r ): 0.0, %solved: 0.99
drcc:: P(r ): 0.0, %solved: 0.99
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beta: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.057, %solved: 1.0
cc:: P(r ): 0.056, %solved: 1.0
drcc:: P(r ): 0.047, %solved: 1.0
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beta: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.054, %solved: 1.0
cc:: P(r ): 0.053, %solved: 1.0
drcc:: P(r ): 0.046, %solved: 1.0

Figure: Beta simulation

∗ Top simulations:
ξi ∼ Beta(1 + n − i, 1 + i) for
i = 1, . . . , n

∗ Clear which asset to choose;
DRCC shows strong upside

∗ Bottom simulations:
ξi ∼ Beta(10/i, 7/i) for
i = 1, . . . , n

∗ Clear how to be conservative;
DRCC shows strong downside
prevention
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Results III
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gmm: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.016, %solved: 0.98
cc:: P(r ): 0.016, %solved: 0.98
drcc:: P(r ): 0.009, %solved: 0.97

mixture components: 2
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gmm: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.016, %solved: 0.98
cc:: P(r ): 0.016, %solved: 0.98
drcc:: P(r ): 0.009, %solved: 0.97

mixture components: 2
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gmm: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.029, %solved: 0.6
cc:: P(r ): 0.029, %solved: 0.6
drcc:: P(r ): 0.017, %solved: 0.55

mixture components: 5
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gmm: 1000 datasets with 1000 simulations on same data
mwtz:: P(r ): 0.029, %solved: 0.6
cc:: P(r ): 0.029, %solved: 0.6
drcc:: P(r ): 0.017, %solved: 0.55

mixture components: 5

Figure: GMM simulation study, top: 2 mixture components, bottom: 5
mixture components

∗ Top simulations: DRCC pushes
mass out of the tail where
xT ξ ≤ ρ

∗ Bottom simulations: DRCC
pushes mass out of the tail

where xT ξ ≤ ρ and into the
better portfolios

∗ Not investigated: when does
DRCC shift “bad” tail mass to
“good” tail mass relative to CC
and Markowitz?
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Overview

Analytic Problem

Choose simple objective so that we can focus on the constraint

minimize
x∈[−2,2]

f0(x) = x

subject to sup
F∈D

PF [∃u : y(x , u, ξ) := 1 + ξ + x sin(u) ≤ 0] ≤ ε

u ∈ [0, 2π], ξ ∼ D′, supp(D′) ⊆ [0, 1]

(11)

Goals

∗ Approximate eq. (11) and solve DRCC problem (relaxed, computationally tractable version)

∗ Attribution and sensitivity analysis for DRCC problem

∗ Most adverse distribution for analytic problem

∗ Most adverse distribution for DRCC approximation relative to analytic problem
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DRCC Formulation

Solver

T := inf
t>0

[
1

t
EF

[
[−(1 + ξ + min

u∈[0,2π]
{x sin(u)}) + t]+

]]

T̂ :=
1

t

[
1

N

N∑
i=1

[−(1 + ξi + min
u∈[0,2π]

{x sin(u)}) + t]+ + δ

]

ˆ̂T :=
1

t

[
1

N

N∑
i=1

[−(1 + ξi + min
j=1,...,m

{x sin(uj )}) + t]+ + δ

]

T ≤ T̂ w.p. q ≥ 1− exp

(
−2Nδ2

Γ2

)

Using ˆ̂T ≥ T̂ gives same probabilistic relationship for approximate model
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Attribution

Uniform distribution

∗ Analytic VaR solution: F−1 (PF [ξ < |x | − 1]) ≤ F−1(ε) =⇒ x∗ = −(1 + F−1(ε))

∗ Analytic CVaR solution: x∗ = −(1 + ε/2)

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.8
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1.4

1.2

1.0

x 
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lu
e

cvar approximation tightness

x * : analytic cvar
x: saa cvar approx
x * : analytic var

Figure: Effect of analytic vs approximate CVaR. The blue line shows the solution x̂∗ of the CVaR problem using
analytic CVaR; the orange line shows the solution x̂ of the CVaR problem using a sample-average CVaR
approximation; the green line shows the solution x∗ of the VaR problem using analytic VaR. We observe that
the CVaR/VaR relaxation is loose and that the sample-average approximation is reasonably tight.
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Figure: Effect of analytic vs discretization. The blue line shows the solution of the CVaR problem using a
sample-average CVaR approximation and the discretized solution of minu x sin(u); the orange line shows the
solution of the CVaR problem using a sample-average CVaR approximation and the analytic solution of
minu x sin(u). We observe that the discretization approximation is reasonably tight.
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Adverse Distribution (Analytic VaR Problem)

Problem

Solve supF∈D{PF [ξ < |x | − 1]} ≤ ε for F∗

Approach: solve VaR via cdf

Characterize F by its left quantile function F−(t) = inf{z : F (z) ≥ t} so that

sup
F∈D
{PF [ξ < |x | − 1]} = sup

F∈D
{F (|x | − 1)} ≤ ε (12)

=⇒ F (|x | − 1) ≤ ε ∀F ∈ D =⇒ |x | ≤ F−(ε) + 1 ∀F ∈ D =⇒ |x | ≤ inf
F∈D
{F−(ε)}+ 1
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Adverse Distribution (Approximate CVaR Problem)

Problem

Restrict to ξ ∼ Bern(p) and find worst p so that solution to

minimize
x,t

x

subject to
1

N

n∑
i=1

[−(1 + ξ − |x |) + t]+ + δ − tε ≤ 0

− t ≤ 0, |x | ≤ 2

(13)

is (1) overly-conservative or (2) overly-aggressive relative to analytic solution

Approach: p vs quantile

Given x∗ = −(1 + F−1(ε), where F−1(e) = 1{e > 1− p} find p so that at p ≈ ε we have

∗ x̂ < x∗: choosing p > 1− ε =⇒ x∗ = −2 but approximation is conservative
x̂ = 1− δ/(1− p̂1) (can solve (c1 = 0))

∗ x̂ > x∗: choosing p ≤ 1− ε restricts the analytic solution to −1, but choosing p / 1− ε may
generate datasets where p̂1 > 1− ε giving x̂ < −1 (can solve (c1) = (c3))
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Empirical Results
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Figure: top: varying p for fixed ε, bottom: overly-aggressive approximation
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DRCC Conclusions

Computation

∗ Tractable for small-medium sized problems

∗ Require large historical samples to approximate tail expectation

∗ Robust to outliers or influential samples?

Empirical

∗ Outperformed standard (limited-assumption) techniques on portfolio problem across
distributions

∗ Bounded support not much of an issue for feasibility (provided enough samples)

Analytic

∗ CVaR is a useful tool and starting point

∗ Duality theory

∗ Combines optimization, statistics, probability
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Recent Work

Flavor

∗ Regularization framework: CVaR as expectation and mean deviations, robust CVaR [7]

∗ Empirical process theory

− empirical likelihood confidence intervals related to finding uncertainty sets given by
KL-div arguments [5]

− general conditions under which robust solutions are consistent [5]

∗ Hypothesis testing for uncertainty/ambiguity sets

− safe-approximation to ambiguous chance constraints by bounding VaR with a ψ
approximation and finding corresponding convex set through duality (epigraph)

− null hypothesis F = F0 and distributions which pass certain hypothesis tests (e.g.,
Pearson χ2, or KL-div tests) at α level define U [2]

∗ CVaR / Wasserstein ball

− set Wasserstein balls around an empirical data-based distribution which allows
controllable conservativeness by adjusting the Wasserstein radius [8]

− Wasserstein ambiguity set centered at empirically estimated distribution [10]
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