Distributionally Robust Chance-Constrained Optimization

an overview of optimization under uncertainty

Jake Roth Advisor: Professor Mihai Anitescu

> University of Chicago Department of Statistics

May 31, 2018

《曰》 《聞》 《臣》 《臣》 三臣 -

Introduction:	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Outline				

1 Introduction

Motivation

Uncertain Optimization

- Uncertainty
- Robust Optimization
- Stochastic Optimization

Data-driven Optimization

- Risk Measures
- Concentration of Measure

2 DRCC

- Formulation
- Approximation

3 Numerical Studies

- Portfolio Optimization
- CICC

4 Conclusions

- DRCC
- Recent Work
- Notes

Motivation and F	Problem Summ	arv		
0000000000				
Introduction: Motivation	DRCC	Numerical Studies	Conclusions	Appendix

* Context

Motivation and P	roblem Summa	ary		
0000000000	00000	0000000000	00	000
Introduction: Motivation	DRCC	Numerical Studies	Conclusions	Appendix

- * Context
 - Reservoir management
 - Objective: convert water to electricity "optimally"
 - Subject to: environmental constraints, unknown demand, uncertain rainfall
 - Given: historical rainfall and demand data

Motivation and F	roblem Summa	arv		
0000000000	00000	0000000000	00	000
Introduction: Motivation	DRCC	Numerical Studies	Conclusions	Appendix

- * Context
 - Reservoir management
 - Objective: convert water to electricity "optimally"
 - Subject to: environmental constraints, unknown demand, uncertain rainfall

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

3/37

- Given: historical rainfall and demand data
- * Goals

Motivation and F	Problem Summa	arv		
0000000000	00000	0000000000	00	000
Introduction: Motivation	DRCC	Numerical Studies	Conclusions	Appendix

- * Context
 - Reservoir management
 - Objective: convert water to electricity "optimally"
 - Subject to: environmental constraints, unknown demand, uncertain rainfall
 - Given: historical rainfall and demand data
- * Goals
 - Robustness to uncertainty
 - Data-driven solution: make efficient use of independent samples ξ_1, \ldots, ξ_N Understand out-of-sample performance: new realizations ξ^1, \ldots, ξ^M

(日) (四) (三) (三) (三)

Motivation and P	roblem Summ	arv		
000000000	00000	0000000000	00	000
Introduction: Motivation	DRCC	Numerical Studies	Conclusions	Appendix

- * Context
 - Reservoir management
 - Objective: convert water to electricity "optimally"
 - Subject to: environmental constraints, unknown demand, uncertain rainfall
 - Given: historical rainfall and demand data
- * Goals
 - Robustness to uncertainty
 - Data-driven solution: make efficient use of independent samples ξ_1, \ldots, ξ_N Understand out-of-sample performance: new realizations ξ^1, \ldots, ξ^M

(日) (四) (三) (三) (三)

- * Tools

Motivation and F	Problem Summ	arv		
0000000000	00000	0000000000	00	000
Introduction: Motivation	DRCC	Numerical Studies	Conclusions	Appendix

- * Context
 - Reservoir management
 - Objective: convert water to electricity "optimally"
 - Subject to: environmental constraints, unknown demand, uncertain rainfall
 - Given: historical rainfall and demand data
- * Goals
 - Robustness to uncertainty
 - Data-driven solution: make efficient use of independent samples ξ_1,\ldots,ξ_N
 - Understand out-of-sample performance: new realizations $\xi^1,\ldots, \tilde{\xi^M}$
- * Tools
 - Robust optimization (RO)
 - Stochastic optimization (SO)
 - Data-driven optimization (DDO)

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000				
Taxonomy of Uncertainty				

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Taxonomy of Uncertainty				

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Taxonomy of Uncertainty				

Uncertain parameters

Let $f_1(x) = Ax - b \le 0$. "Uncertainty" \approx problem data A and b may not be known fully. Useful distinction: measurement error vs stochastic Examples, assumptions:

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Taxonomy of Uncertainty				

Standard problem

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \end{array}$$

for control variable $x \in \mathbb{R}^n$ and functions $f_i : \mathbb{R}^n \to \mathbb{R}$

Uncertain parameters

Let $f_1(x) = Ax - b \le 0$. "Uncertainty" \approx problem data A and b may not be known fully. Useful distinction: measurement error vs stochastic Examples, assumptions:

(1) measurement error, but believe $A_{ij} \in [a_{lo}, a_{hi}] = \bar{a}, b_i \in [b_{lo}, b_{hi}] = \bar{b}, \{\bar{a}, \bar{b}\} := U$

(1)

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Taxonomy of Uncertainty				

Standard problem

$$\min_{x} \max_{x} f_0(x)$$

subject to
$$f_i(x) \leq 0, \quad i = 1, \dots, r$$

for control variable $x \in \mathbb{R}^n$ and functions $f_i : \mathbb{R}^n \to \mathbb{R}$

Uncertain parameters

Let $f_1(x) = Ax - b \le 0$. "Uncertainty" \approx problem data A and b may not be known fully. Useful distinction: measurement error vs stochastic Examples, assumptions:

- (1) measurement error, but believe $A_{ij} \in [a_{lo}, a_{hi}] = \bar{a}, b_i \in [b_{lo}, b_{hi}] = \bar{b}, \{\bar{a}, \bar{b}\} := U$
- (2) unobserved process, but must have $A(\omega)x + b(\omega) \leq 0$ for state $\omega \in \Omega \subseteq \mathbb{R}^d$ with dist'n D

(1)

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Taxonomy of Uncertainty				

Standard problem

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \end{array}$$

for control variable
$$x \in \mathbb{R}^n$$
 and functions $f_i : \mathbb{R}^n \to \mathbb{R}$

Uncertain parameters

Let $f_1(x) = Ax - b \le 0$. "Uncertainty" \approx problem data A and b may not be known fully. Useful distinction: measurement error vs stochastic Examples, assumptions:

- (1) measurement error, but believe $A_{ij} \in [a_{lo}, a_{hi}] = \bar{a}, b_i \in [b_{lo}, b_{hi}] = \bar{b}, \{\bar{a}, \bar{b}\} := \mathcal{U}$
- (2) unobserved process, but must have $A(\omega)x + b(\omega) \leq 0$ for state $\omega \in \Omega \subseteq \mathbb{R}^d$ with dist'n D
- (3) unobserved process, but believe [4] (risk-measure DRO (a) $(\mathbb{E}[\omega] - \hat{\mu})^T \hat{\Sigma}^{-1} (\mathbb{E}[\omega] - \hat{\mu}) \leq \gamma_{mean}$ (b) $\mathbb{E}\left[(\omega - \hat{\mu})(\omega - \hat{\mu})^T\right] \leq \gamma_{cov}\hat{\Sigma}$ (c) $\mathbb{E}[\mathbb{I}\{\omega \in \Omega\}] = 1, \Omega$ closed, convex

(1)

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Robust Optimization				

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Robust Optimization				

Standard formulation: "optimization for the worst set of parameters"

$$\min_{x} \max_{u \in \mathcal{U}} \left\{ \sup_{u \in \mathcal{U}} f_0(x, u) : f_i(x, u) \le 0, \quad i = 1, \dots, m, \quad \forall u \in \mathcal{U} \right\}$$
(2)

イロン イロン イヨン イヨン 三日

5/37

for control variable $x \in \mathbb{R}^n$, uncertainty set $\mathcal{U} \ni u$ for parameter element u, and functions $f_i : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$; cardinality of \mathcal{U} may be infinite

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Robust Optimization				

Standard formulation: "optimization for the worst set of parameters"

$$\min_{x} \inf_{u \in \mathcal{U}} f_0(x, u) : f_i(x, u) \le 0, \quad i = 1, \dots, m, \quad \forall u \in \mathcal{U}$$
(2)

for control variable $x \in \mathbb{R}^n$, uncertainty set $\mathcal{U} \ni u$ for parameter element u, and functions $f_i : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$; cardinality of \mathcal{U} may be infinite

Robust counterpart

$$\underset{x,t}{\operatorname{minimize}} \left\{ t : f_0(x,u) \le t, \ f_i(x,u) \le 0, \quad i = 1, \dots, m, \quad \forall u \in \mathcal{U} \right\}$$

$$\underset{x,t}{\operatorname{minimize}} \left\{ t : f_0(x,u) \le t, \ \sup_{u \in \mathcal{U}} \{ f_i(x,u) \} \le 0, \quad i = 1, \dots, m \right\}$$

$$(3)$$

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Robust Optimization				

Standard formulation: "optimization for the worst set of parameters"

$$\min_{x} \max_{u \in \mathcal{U}} \left\{ \sup_{u \in \mathcal{U}} f_0(x, u) : f_i(x, u) \le 0, \quad i = 1, \dots, m, \quad \forall u \in \mathcal{U} \right\}$$
(2)

for control variable $x \in \mathbb{R}^n$, uncertainty set $\mathcal{U} \ni u$ for parameter element u, and functions $f_i : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$; cardinality of \mathcal{U} may be infinite

Robust counterpart

$$\underset{x,t}{\operatorname{minimize}} \left\{ t : f_0(x,u) \le t, \ f_i(x,u) \le 0, \quad i = 1, \dots, m, \quad \forall u \in \mathcal{U} \right\}$$

$$\underset{x,t}{\operatorname{minimize}} \left\{ t : f_0(x,u) \le t, \ \sup_{u \in \mathcal{U}} \{ f_i(x,u) \} \le 0, \quad i = 1, \dots, m \right\}$$

$$(3)$$

Properties

- + Safe: Immunize against entire uncertainty set
- + Tractable (often): for linear, SOCP, and SDP problems, certain polyhedral sets can preserve the structure of the problem [3]
- + One-off interpretable: no reliance on frequentist notion of probability
- Overly conservative (often): every uncertainty realization
- How to make explicit uncertainty set assumptions?
- Semi-infinite constraints (but can use duality to convert \forall to \exists)

5/37

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Stochastic Optimization				

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Stochastic Optimization				

General formulation

minimize
$$F_0(x,\omega) = \int_{\Omega} f_0(x,\omega) \, dD(\omega)$$

subject to $F_i(x,\omega) = \int_{\Omega} f_i(x,\omega) \, dD(\omega) \le 0, \quad i = 1, \dots, m$
(4)

(日) (圖) (E) (E) (E)

6/37

for control variable $x \in \mathbb{R}^n$, uncertainty parameter $\omega \in \mathbb{R}^d$, distribution function D, and constraint functions $f_i : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$ [6]

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Stochastic Optimization				

General formulation

minimize
$$F_0(x,\omega) = \int_{\Omega} f_0(x,\omega) \, dD(\omega)$$

subject to $F_i(x,\omega) = \int_{\Omega} f_i(x,\omega) \, dD(\omega) \le 0, \quad i = 1, \dots, m$ (4)

for control variable $x \in \mathbb{R}^n$, uncertainty parameter $\omega \in \mathbb{R}^d$, distribution function D, and constraint functions $f_i : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$ [6]

Standard formulation (chance-constraint)

$$\min_{x} \max \{f_0(x,\omega): \mathbb{P}[f_i(x,\omega) \le 0] \ge \alpha, \quad \omega \in \Omega, \quad i = 1, \dots, m\}$$
(5)

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Stochastic Optimization				

General formulation

$$\begin{array}{ll} \underset{x}{\text{minimize}} & F_0(x,\omega) = \int_{\Omega} f_0(x,\omega) \ dD(\omega) \\ \text{subject to} & F_i(x,\omega) = \int_{\Omega} f_i(x,\omega) \ dD(\omega) \le 0, \quad i = 1, \dots, m \end{array}$$

$$(4)$$

for control variable $x \in \mathbb{R}^n$, uncertainty parameter $\omega \in \mathbb{R}^d$, distribution function D, and constraint functions $f_i : \mathbb{R}^n \times \mathbb{R}^d \to \mathbb{R}$ [6]

Standard formulation (chance-constraint)

$$\min_{\mathbf{x}} \max \{ f_0(\mathbf{x}, \omega) : \mathbb{P} [f_i(\mathbf{x}, \omega) \le 0] \ge \alpha, \quad \omega \in \Omega, \quad i = 1, \dots, m \}$$

Properties

- + Expressive: CCs operate in the space the decisionmaker can make intuitive sense of
- + Natural: connection to risk measures
- Expensive: quadrature, simulations for integrals?, less-nice distributions?

(5)

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Example				

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Example				

LP: $x, c, a_i \in \mathbb{R}^n$

$$\underset{x}{\text{minimize}} \quad c^{T}x \quad \text{subject to} \quad a_{i}^{T}x \leq b_{i}, \quad i = 1, \dots, m$$
(6)

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Example				

LP:
$$x, c, a_i \in \mathbb{R}^n$$

minimize $c^T x$ subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$ (6)

Uncertain LP: RO

Let $\mathcal{U} = \{\{\mathcal{E}_i\}_{i=1}^m\}$, i.e., b, c known, and $\mathcal{E}_i = \{\bar{a}_i + P_i u : \|u\|_2 \le 1\}, \bar{a}_i \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n}$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T}x \quad \text{subject to} \quad a_{i}^{T}x \leq b_{i}, \quad \forall a_{i} \in \mathcal{E}_{i}, \quad i = 1, \dots, m \\ \\ \underset{x}{\text{minimize}} & c^{T}x \quad \text{subject to} \quad \overline{a}_{i}^{T}x + \|P_{i}^{T}x\|_{2} \leq b_{i}, \quad i = 1, \dots, m \end{array}$$

$$(7)$$

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Example				

LP: $x, c, a_i \in \mathbb{R}^n$

minimize
$$c^T x$$
 subject to $a_i^T x \le b_i$, $i = 1, \dots, m$ (6)

Uncertain LP: RO

Let
$$\mathcal{U} = \{\{\mathcal{E}_i\}_{i=1}^m\}$$
, i.e., b, c known, and $\mathcal{E}_i = \{\bar{a}_i + P_i u : \|u\|_2 \le 1\}, \bar{a}_i \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n}$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T}x & \text{subject to} & a_{i}^{T}x \leq b_{i}, \quad \forall a_{i} \in \mathcal{E}_{i}, \quad i = 1, \dots, m \\ \underset{x}{\text{minimize}} & c^{T}x & \text{subject to} & \overline{a}_{i}^{T}x + \|P_{i}^{T}x\|_{2} \leq b_{i}, \quad i = 1, \dots, m \end{array}$$
(7)

Uncertain LP: SO

Let
$$a_i \sim N(\bar{a}_i, \Sigma_i)$$
, i.e., $f_i(x, \omega) = a_i^T x - b_i$ with $D = \Phi$

$$\begin{array}{ll} \underset{x}{\text{minimize}} & c^{T}x & \text{subject to} & \mathbb{P}\left[a_{i}^{T}x \leq b_{i}\right] \geq \eta, \quad i = 1, \dots, m \\ \underset{x}{\text{minimize}} & c^{T}x & \text{subject to} & \bar{a}_{i}^{T}x + \Phi^{-1}(\eta) \|\Sigma_{i}^{1/2}x\|_{2} \leq b_{i}, \quad i = 1, \dots, m \end{array}$$

$$\tag{8}$$

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Comparison				

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Comparison				

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Comparison				

- * SO \rightarrow RO: use information about stochastic nature of uncertainty to build ${\cal U}$
- * RO \rightarrow SO: immunize against all $u \in U$ to ensure probabilistic coverage in chance-constraint setting

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Comparison				

- * SO \rightarrow RO: use information about stochastic nature of uncertainty to build ${\cal U}$
- * RO \rightarrow SO: immunize against all $u \in \mathcal{U}$ to ensure probabilistic coverage in chance-constraint setting

8/37

Differences

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Comparison				

- * SO \rightarrow RO: use information about stochastic nature of uncertainty to build ${\cal U}$
- * RO \rightarrow SO: immunize against all $u \in \mathcal{U}$ to ensure probabilistic coverage in chance-constraint setting

Differences

- * "Expressive vs tractable" tradeoff
- * RO: probability is not part of the formulation
- * SO: immunization only for certain outcomes

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Comparison				

- * SO \rightarrow RO: use information about stochastic nature of uncertainty to build ${\cal U}$
- * RO \rightarrow SO: immunize against all $u \in U$ to ensure probabilistic coverage in chance-constraint setting

8/37

Differences

- * "Expressive vs tractable" tradeoff
- * RO: probability is not part of the formulation
- * SO: immunization only for certain outcomes

Beyond

Introduction: Uncertain Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000	00000	0000000000	00	000
Comparison				

- * SO \rightarrow RO: use information about stochastic nature of uncertainty to build ${\cal U}$
- * RO \rightarrow SO: immunize against all $u \in U$ to ensure probabilistic coverage in chance-constraint setting

Differences

- * "Expressive vs tractable" tradeoff
- * RO: probability is not part of the formulation
- \ast SO: immunization only for certain outcomes

Beyond

- $\ast\,$ Beyond RO: "tighten" $\mathcal U$ through introducing probabilistic notions
- * Beyond SO: generalize by introducing "ambiguity" into chance-constraints
- * Constraint form: $\sup_{u \in \mathcal{U}} \{f_i(x, u)\} \le 0 \text{ vs } \mathbb{P}\left[\{f_i(x, \omega)\} \le 0\right] \ge \alpha$

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Data-driven Optimization				

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Data-driven Optimization				

Typical problem

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Data-driven Optimization				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

9/37

Typical problem

- * Finite sample ${\mathcal S}$
- * RO: estimate \mathcal{U} from \mathcal{S} (build uncertainty sets)
- * SO: estimate D from S (estimate distribution)
| Introduction: Data-driven Optimization | DRCC | Numerical Studies | Conclusions | Appendix |
|--|-------|-------------------|-------------|----------|
| 0000000000 | 00000 | 0000000000 | 00 | 000 |
| Data-driven Optimization | | | | |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

9/37

Typical problem

- $* \ \, {\sf Finite \ \, sample \ \, {\cal S}}$
- * RO: estimate \mathcal{U} from \mathcal{S} (build uncertainty sets)
- * SO: estimate D from S (estimate distribution)

Useful tools

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Data-driven Optimization				

Typical problem

- $* \ \, {\sf Finite \ \, sample \ \, {\cal S}}$
- * RO: estimate \mathcal{U} from \mathcal{S} (build uncertainty sets)
- * SO: estimate D from S (estimate distribution)

Useful tools

- * Risk-measure literature
- * Concentration of measure

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Data-driven Optimization				

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

9/37

Typical problem

- $* \ \, \mathsf{Finite \ sample } \mathcal{S}$
- * RO: estimate \mathcal{U} from \mathcal{S} (build uncertainty sets)
- * SO: estimate D from S (estimate distribution)

Useful tools

- * Risk-measure literature
- * Concentration of measure

Interpretation

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Data-driven Optimization				

Typical problem

- $* \ \, {\sf Finite \ \, sample \ \, {\cal S}}$
- * RO: estimate \mathcal{U} from \mathcal{S} (build uncertainty sets)
- * SO: estimate D from S (estimate distribution)

Useful tools

- * Risk-measure literature
- * Concentration of measure

Interpretation

* RO and SO begin to share similar properties in a data-driven context

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Risk measures				

Introduction: Data-driven Optimization	DRCC 00000	Numerical Studies 00000000000	Conclusions 00	Appendix 000
Risk measures				
Definition (Risk measure)				
A risk measure $\rho: \mathcal{X} \to \mathbb{R}$, for \mathcal{X}	ť the space of rand	lom variables, satisfies	5	
* translation invariance: $\rho(X)$ =	X if X is const	* normalization: $ ho$	(0) = 0	
* positive homogeneity: $\rho(tX)$ =	= t ho(X) for $t > 0$	* monotonicity: if then $ ho(X_1) \leq ho($	$X_1 \leq X_2$ almost si $X_2)$	urely,

・ロト・(中下・(中下・(日下・(日下)))

10 / 37

DRCC 00000	Numerical Studies	Conclusions OO	Appendix 000
$r \; \mathcal{X}$ the space of ran	dom variables, sati	sfies	
= X if X is const	* normalizatio	n: $ ho(0)=0$	
)=t ho(X) for $t>0$	* monotonicity then $\rho(X_1)$	y: if $X_1 \leq X_2$ almost $\leq ho(X_2)$	ost surely,
	$f \mathcal{X} \text{ the space of ran}$ $f = X \text{ if } X \text{ is const}$ $f = t\rho(X) \text{ for } t > 0$	$P = X \text{ if } X \text{ is const} \qquad \text{* monotonicity}$ $P = t \rho(X) \text{ for } t > 0 \qquad \text{* monotonicity}$	$P = X \text{ if } X \text{ is const} \qquad * \text{ normalization: } \rho(0) = 0$ $P = t\rho(X) \text{ for } t > 0 \qquad * \text{ monotonicity: if } X_1 \le X_2 \text{ almost then } \rho(X_1) \le \rho(X_2)$

Definition (VaR, [13])

Let $\alpha \in (0,1)$ be a given confidence level and Z_x be a random variable characterizing the "loss" in a particular system under decision x. Then for cdf F_{Z_x}

$$\mathsf{VaR}_{\alpha}\left[Z_{x}\right] \coloneqq F_{Z_{x}}^{-}(1-\alpha) = \inf\{t : \mathbb{P}\left[Z_{x} > t\right] \leq \alpha\}$$

Introduction: Data-driven Optimization	DRCC 00000	Numerical Studies	Conclusions 00	Appendix 000
Risk measures				
Definition (Risk measure)				
A risk measure $\rho:\mathcal{X}\rightarrow\mathbb{R},$ for	${\mathcal X}$ the space of ran	dom variables, satis	fies	
* translation invariance: $ ho(X)$	= X if X is const	* normalization	: $ ho(0)=0$	
* positive homogeneity: $\rho(tX)$	= t ho(X) for $t > 0$	* monotonicity: then $ ho(X_1) \leq$	$ \begin{array}{l} \text{if } X_1 \leq X_2 \text{ almo} \\ \rho(X_2) \end{array} $	st surely,

Definition (VaR, [13])

Let $\alpha \in (0,1)$ be a given confidence level and Z_x be a random variable characterizing the "loss" in a particular system under decision x. Then for cdf F_{Z_x}

$$\mathsf{VaR}_{\alpha}\left[Z_{\mathsf{x}}\right] \coloneqq \mathsf{F}_{Z_{\mathsf{x}}}^{-}(1-\alpha) = \inf\{t : \mathbb{P}\left[Z_{\mathsf{x}} > t\right] \leq \alpha\}$$

Definition (CVaR, [13])

Under the same scenario as VaR, define ($\stackrel{*}{=}$ for smooth cdf F_{Z_x})

$$\mathsf{CVaR}_{\alpha}[Z_x] \coloneqq \inf_{t \in \mathbb{R}} \{t + \alpha^{-1} \mathbb{E}\left[[Z_x - t]_+\right]\} \stackrel{*}{=} \alpha^{-1} \int_{1-\alpha}^1 \mathsf{VaR}_{1-s}[Z_x] \, ds$$

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000000	00000	0000000000	00	000
Coherent risk measures				

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Coherent risk measures				

If the problem outcome is convex with respect to the decision, i.e., f(x) convex in x, then a risk measure is called "coherent" if $\rho(f(x))$ is convex in x [12]. Coherent risk measures satisfy the additional property

* subadditivity: $ho(X_1+X_2) \leq
ho(X_1)+
ho(X_2)$

With positive homogeneity & $\lambda \in [0, 1]$, this gives: $\rho(\lambda X_1 + (1 - \lambda)X_2) \le \lambda \rho(X_1) + (1 - \lambda)\rho(X_2)$

(ロ) (同) (E) (E) (E)

11/37

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
000000000000	00000	0000000000	00	000
Coherent risk measures				

If the problem outcome is convex with respect to the decision, i.e., f(x) convex in x, then a risk measure is called "coherent" if $\rho(f(x))$ is convex in x [12]. Coherent risk measures satisfy the additional property

* subadditivity: $ho(X_1+X_2) \leq
ho(X_1)+
ho(X_2)$

With positive homogeneity & $\lambda \in [0, 1]$, this gives: $\rho(\lambda X_1 + (1 - \lambda)X_2) \leq \lambda \rho(X_1) + (1 - \lambda)\rho(X_2)$

Theorem (Representation of coherent risk measure, [3])

A risk measure ρ is coherent if and only if there exists a family of probability measures Q such that

$$\rho(X) = \sup_{q \in \mathcal{Q}} \mathbb{E}_q[X]$$

イロン イロン イヨン イヨン 三日

for random variables X in the space of almost surely bounded random variables.

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Coherent risk measures				

If the problem outcome is convex with respect to the decision, i.e., f(x) convex in x, then a risk measure is called "coherent" if $\rho(f(x))$ is convex in x [12]. Coherent risk measures satisfy the additional property

* subadditivity: $ho(X_1+X_2) \leq
ho(X_1)+
ho(X_2)$

With positive homogeneity & $\lambda \in [0, 1]$, this gives: $\rho(\lambda X_1 + (1 - \lambda)X_2) \leq \lambda \rho(X_1) + (1 - \lambda)\rho(X_2)$

Theorem (Representation of coherent risk measure, [3])

A risk measure ρ is coherent if and only if there exists a family of probability measures Q such that

$$\rho(X) = \sup_{q \in \mathcal{Q}} \mathbb{E}_q[X]$$

for random variables X in the space of almost surely bounded random variables.

CVaR properties

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Coherent risk measures				

If the problem outcome is convex with respect to the decision, i.e., f(x) convex in x, then a risk measure is called "coherent" if $\rho(f(x))$ is convex in x [12]. Coherent risk measures satisfy the additional property

* subadditivity: $ho(X_1+X_2) \leq
ho(X_1)+
ho(X_2)$

With positive homogeneity & $\lambda \in [0, 1]$, this gives: $\rho(\lambda X_1 + (1 - \lambda)X_2) \leq \lambda \rho(X_1) + (1 - \lambda)\rho(X_2)$

Theorem (Representation of coherent risk measure, [3])

A risk measure ρ is coherent if and only if there exists a family of probability measures Q such that

$$\rho(X) = \sup_{q \in \mathcal{Q}} \mathbb{E}_q[X]$$

for random variables X in the space of almost surely bounded random variables.

CVaR properties

* Convex (linearity of expectation, convexity of $[x - c]_+$) and hence coherent

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Coherent risk measures				

If the problem outcome is convex with respect to the decision, i.e., f(x) convex in x, then a risk measure is called "coherent" if $\rho(f(x))$ is convex in x [12]. Coherent risk measures satisfy the additional property

* subadditivity: $ho(X_1+X_2) \leq
ho(X_1)+
ho(X_2)$

With positive homogeneity & $\lambda \in [0, 1]$, this gives: $\rho(\lambda X_1 + (1 - \lambda)X_2) \leq \lambda \rho(X_1) + (1 - \lambda)\rho(X_2)$

Theorem (Representation of coherent risk measure, [3])

A risk measure ρ is coherent if and only if there exists a family of probability measures Q such that

$$\rho(X) = \sup_{q \in \mathcal{Q}} \mathbb{E}_q[X]$$

for random variables X in the space of almost surely bounded random variables.

CVaR properties

- * Convex (linearity of expectation, convexity of $[x c]_+$) and hence *coherent*
- ∗ CVaR ≥ VaR (more extreme)

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Coherent risk measures				

If the problem outcome is convex with respect to the decision, i.e., f(x) convex in x, then a risk measure is called "coherent" if $\rho(f(x))$ is convex in x [12]. Coherent risk measures satisfy the additional property

* subadditivity: $ho(X_1+X_2) \leq
ho(X_1)+
ho(X_2)$

With positive homogeneity & $\lambda \in [0, 1]$, this gives: $\rho(\lambda X_1 + (1 - \lambda)X_2) \leq \lambda \rho(X_1) + (1 - \lambda)\rho(X_2)$

Theorem (Representation of coherent risk measure, [3])

A risk measure ρ is coherent if and only if there exists a family of probability measures Q such that

$$\rho(X) = \sup_{q \in \mathcal{Q}} \mathbb{E}_q[X]$$

for random variables X in the space of almost surely bounded random variables.

CVaR properties

- * Convex (linearity of expectation, convexity of $[x c]_+$) and hence *coherent*
- ∗ CVaR ≥ VaR (more extreme)
- * CVaR is a weighted average of VaR and conditional expectation of losses exceeding VaR; NOT "robust"

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Risk Measures for DDO				

< □ > < □ > < 壹 > < 壹 > < 壹 > < 壹 > ○ Q (~ 12/37

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000				
Risk Measures for DDO				

Hypothetical: portfolio optimization

- * Goal: For decision weights $x \in \mathbb{R}^n$ and RV returns r, ensure that wealth $x^T r \ge \eta$
- * Given: $[r_1, \ldots, r_m] = R \in \mathbb{R}^{n \times m}$ historical returns

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Risk Measures for DDO				

Hypothetical: portfolio optimization

- * Goal: For decision weights $x \in \mathbb{R}^n$ and RV returns r, ensure that wealth $x^T r \ge \eta$
- * Given: $[r_1, \ldots, r_m] = R \in \mathbb{R}^{n \times m}$ historical returns

RO-inspired models [1]

- * Scenarios (implicit CVaR): define $Q = \operatorname{conv}\{q_1, \ldots, q_l\}$ over "scenarios" q_1, q_2, \ldots, q_l for $q_i \in \Delta^n$ simplex and build $\mathcal{U} = \operatorname{conv}\{Rq : q \in Q\}$ so Q generates a coherent risk measure with sup over Q
- * Explicit CVaR: CVaR defines $\{Q = q \in \Delta^n : q_i \leq p_i/\alpha\}$ for $p_i = 1/n$ and $\alpha = j/n, j \in \mathbb{Z}_+$

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
00000000000	00000	0000000000	00	000
Risk Measures for DDO				

Hypothetical: portfolio optimization

- * Goal: For decision weights $x \in \mathbb{R}^n$ and RV returns r, ensure that wealth $x^T r \ge \eta$
- * Given: $[r_1, \ldots, r_m] = R \in \mathbb{R}^{n \times m}$ historical returns

RO-inspired models [1]

- * Scenarios (implicit CVaR): define $Q = \operatorname{conv}\{q_1, \ldots, q_l\}$ over "scenarios" q_1, q_2, \ldots, q_l for $q_i \in \Delta^n$ simplex and build $\mathcal{U} = \operatorname{conv}\{Rq : q \in Q\}$ so Q generates a coherent risk measure with sup over Q
- * Explicit CVaR: CVaR defines $\{Q = q \in \Delta^n : q_i \leq p_i/\alpha\}$ for $p_i = 1/n$ and $\alpha = j/n, j \in \mathbb{Z}_+$

SO-inspired models

- * "Robust CVaR": minimization with ambiguity in mean and covariance [4]
- * Ambiguous chance-constraints: VaR constraints with unknown distribution
- * Scenarios: estimate empirical distribution robustly (e.g., factor models [7])

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Concentration of Measure	for DDO			

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Concentration of Measu	re for DDO			

Theorem (Hoeffding, [9])

Let X_1, \ldots, X_n be independent, bounded random variables such that $X_i \in [a_i, b_i] \ \forall i = 1, \ldots, n$. Then we have

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]\geq\delta\right)\leq\exp\left(\frac{-2n^{2}\delta^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$

Introduction: Data-driven Optimization	DRCC	Numerical Studies	Conclusions	Appendix		
0000000000	00000	0000000000	00	000		
Concentration of Measu	Concentration of Measure for DDO					

Theorem (Hoeffding, [9])

Let X_1, \ldots, X_n be independent, bounded random variables such that $X_i \in [a_i, b_i] \ \forall i = 1, \ldots, n$. Then we have

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]\geq\delta\right)\leq\exp\left(\frac{-2n^{2}\delta^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$

Application: inference for stochastic optimization

* Probabilistic bound on difference between empirical estimate of CVaR and true CVaR

	DRCC:	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Outline				

1 Introduction

- Motivation
- Uncertain Optimization
 - Uncertainty
 - Robust Optimization
 - Stochastic Optimization
- Data-driven Optimization
 - Risk Measures
 - Concentration of Measure

2 DRCC

- Formulation
- Approximation
- **3** Numerical Studies
 - Portfolio Optimization
 - CICC

4 Conclusions

- DRCC
- Recent Work
- Notes

	DRCC: Formulation	Numerical Studies	Conclusions	Appendix
0000000000	0000	0000000000	00	000
Formulation				

	DRCC: Formulation	Numerical Studies	Conclusions	Appendix
0000000000	0000	0000000000	00	000
Formulation				

Overview

- * Worst case VaR constraint over family of probability distributions
- * Distributionally robust stochastic program
- * Bounded support assumption to use concentration inequality

	DRCC: Formulation	Numerical Studies	Conclusions	Appendix
0000000000	0000	0000000000	00	000
Formulation				

Overview

- * Worst case VaR constraint over family of probability distributions
- * Distributionally robust stochastic program
- * Bounded support assumption to use concentration inequality

Formulation

minimize	$f_0(x)$	
subject to	$\sup_{F\in\mathcal{D}}\mathbb{P}_{F}\left[f(x,\xi)\leq 0\right]\geq \alpha$	(9
	$supp(\mathcal{D}) \subseteq [a, b]$	

- * Control variable: $x \in \mathbb{R}^d$
- * Randomness: $\xi \in \mathbb{R}^p$
- * Constraint function: $f: \mathbb{R}^{d+p} \to \mathbb{R}$ is convex in x
- * Distribution family: $f(x,\xi) \sim F$ for $F \in D$ with bounded support
- * Certainty: $\alpha \in (0,1)$

	DRCC: Approximation	Numerical Studies	Conclusions	Appendix
0000000000	$\circ \bullet \bullet \bullet \bullet$	0000000000	00	000
Tractable Approx	imation I			

Goal: $\mathbb{P}_{F}[f(x,\xi) \leq 0]$ cdf may not be convex, so we seek a reformulation (and follow [11])

Bound the step-function

Rewrite VaR as 0/1 penalty for RV $Z_x := f(x, \xi)$

 $\mathsf{VaR}_{\alpha}\left[Z_{x}\right] \leq 0 \iff \mathbb{P}[Z_{x} \leq 0] \geq 1 - \alpha \iff \mathbb{P}[Z_{x} > 0] \leq \alpha \iff \mathbb{E}[\mathbb{1}\{Z_{x} > 0\}] \leq \alpha$

And bound with convex $\psi : \mathbb{R} \to \mathbb{R}$ such that $\psi(tz) \ge \mathbb{1}\{tz > 0\}$ and t > 0

Optimize bound

Replace $t = t^{-1}$

$$\mathbb{E}[\psi(t^{-1}Z_x)] \geq \mathbb{E}[\mathbb{1}\{Z_x > 0\}] \,\forall t > 0 \implies \inf_{t > 0} \left\{ \mathbb{E}[\psi(t^{-1}Z_x)] \right\} \geq \mathbb{E}[\mathbb{1}\{Z_x > 0\}].$$

and note that $\psi(z) = [1+\gamma z]_+$ for $\gamma > 0$ is smallest for functions such that $\psi(0) = 1$

	DRCC: Approximation	Numerical Studies	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Tractable Approx	imation II			

Ensure convexity

Write as perspective function $(x, t) \mapsto t\psi(x/t)$ by multiplying by t

$$\inf_{t>0} \left\{ t \mathbb{E}[\psi(t^{-1}Z_x)] \right\} \le \alpha t \implies \mathbb{E}[\mathbb{1}\{Z_x > 0\}] \le \alpha.$$

Rearrange as CVaR

Rearranging the inequality on the left, substituting $\psi(z)$, replacing t'=-t, and rescaling by α , we have

$$\inf_{t>0} \left\{ t \mathbb{E}[\psi(t^{-1}Z_x)] - \alpha t \right\} = \inf_{t>0} \left\{ t \mathbb{E}[[1+t^{-1}Z_x)]_+] - \alpha t \right\}$$
$$= \inf_{t>0} \left\{ \mathbb{E}[[t+Z_x]_+] - \alpha t \right\}$$
$$= \inf_{t'<0} \left\{ \mathbb{E}[[Z_x - t']_+] + \alpha t' \right\} = \inf_{t'\in\mathbb{R}} \left\{ \alpha^{-1}\mathbb{E}[[Z_x - t']_+] + t' \right\}$$
$$= \mathsf{CVaR}_{\alpha} [Z_x]$$

	DRCC: Approximation	Numerical Studies	Conclusions	Appendix
0000000000	$\circ \bullet \bullet \bullet \bullet$	0000000000	00	000
Tractable Appr	oximation III			

Estimate generating function bound

Sample average approximation of ψ expectation (called *generating function*)

$$T = \mathbb{E}_F\left[\left[f(x,\xi) + t\right]_+\right]$$

and an empirical estimate

$$\hat{\mathcal{T}} = rac{1}{N}\sum_{i=1}^{N}[f(x,\xi_i)+t]_+$$

Bound out-of-sample performance

Using Hoeffding theorem 6, bound probability of "bad" set Ξ_1

$$\begin{split} \Xi_0 &:= \{\xi \in \Xi : \mathcal{T}(\xi) - \hat{\mathcal{T}}(\xi) \leq \delta\} \\ \Xi_1 &:= \Omega \backslash \Xi_0 = \{\xi \in \Xi : \mathcal{T}(\xi) - \hat{\mathcal{T}}(\xi) > \delta\} \\ \mathbb{P}(\Xi_1) \leq \exp\left(\frac{-2N\delta^2}{\Gamma^2}\right) \iff 1 - \mathbb{P}(\Xi_1) = \mathbb{P}(\Xi_0) \geq 1 - \exp\left(\frac{-2N\delta^2}{\Gamma^2}\right) \end{split}$$

where Γ is support bound

◆□ → < □ → < 三 → < 三 → < 三 → < 三 → </p>

Introduction	DRCC: Approximation	Numerical Studies	Conclusions	Appendix
0000000000	$\odot \bullet \bullet \bullet \bullet$	0000000000	00	000
Tractable App	proximation IV			

Summary

$$\begin{aligned} \mathcal{T} &\leq \hat{\mathcal{T}} + \delta \leq t(1-\alpha) \\ &\implies \inf_{t>0} \left[\frac{\mathbb{E}_F \left[f(x,\xi) + t \right]_+}{t} \right] \leq \frac{\frac{1}{N} \sum_{i=1}^N [f(x,\xi_i) + t]_+ + \delta}{t} \leq 1-\alpha \\ &\implies \mathbb{P}_F(f(x,\xi) \geq 0) \leq 1-\alpha \end{aligned}$$

◆□ → < □ → < □ → < 三 → < 三 → < 三 → ○ へ ○ 19/37

	DRCC	Numerical Studies:	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Outline				

1 Introduction

- Motivation
- Uncertain Optimization
 - Uncertainty
 - Robust Optimization
 - Stochastic Optimization
- Data-driven Optimization
 - Risk Measures
 - Concentration of Measure

2 DRCC

- Formulation
- Approximation
- **3** Numerical Studies
 - Portfolio OptimizationCICC

4 Conclusions

- DRCC
- Recent Work
- Notes

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	••••••	00	000
Overview				

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	••••••	00	000
Overview				

Problem

Bi-objective problem:

$$\underset{x \in \mathbb{R}^{n}_{+}}{\text{maximize}} \quad \mathbb{E}\left[\xi^{T}x\right] = \mu^{T}x \quad \& \quad \underset{x \in \mathbb{R}^{n}_{+}}{\text{minimize}}R(x) \quad \text{subject to} \quad \mathbb{1}^{T}x = 1 \quad \& \quad x_{i} \ge 0, \ i = 1, \dots, n$$

$$(10)$$

★ロト ★御 と ★ 注 と ★ 注 と 一注

21/37

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	••••••	00	000
Overview				

Problem

Bi-objective problem:

$$\underset{x \in \mathbb{R}^{n}_{+}}{\text{maximize}} \quad \mathbb{E}\left[\xi^{T}x\right] = \mu^{T}x \quad \& \quad \underset{x \in \mathbb{R}^{n}_{+}}{\text{minimize}}R(x) \quad \text{subject to} \quad \mathbb{1}^{T}x = 1 \quad \& \quad x_{i} \ge 0, \ i = 1, \dots, n$$

$$(10)$$

Methods

- * Markowitz: $R(x) := x^T \Sigma x$ for empirical covariance Σ
- * CC (VaR): $R(x) := \mathbb{P}(\xi^T x \le \rho) \le \epsilon$ for specified return threshold ρ
- * DRCC (approximate CVaR): $R(x) := \mathbb{P}_{F \in \mathcal{D}}(\xi^T x \leq \rho) \leq \epsilon$ for specified return threshold ρ , certainty parameter ϵ , and distributional set \mathcal{D}

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	• 0000 00000	00	000
Overview				

Problem

Bi-objective problem:

$$\underset{x \in \mathbb{R}^{n}_{+}}{\text{maximize}} \quad \mathbb{E}\left[\xi^{T}x\right] = \mu^{T}x \quad \& \quad \underset{x \in \mathbb{R}^{n}_{+}}{\text{minimize}}R(x) \quad \text{subject to} \quad \mathbb{1}^{T}x = 1 \quad \& \quad x_{i} \ge 0, \ i = 1, \dots, n$$

$$(10)$$

Methods

- * Markowitz: $R(x) := x^T \Sigma x$ for empirical covariance Σ
- * CC (VaR): $R(x) := \mathbb{P}(\xi^T x \le \rho) \le \epsilon$ for specified return threshold ρ
- * DRCC (approximate CVaR): $R(x) := \mathbb{P}_{F \in \mathcal{D}}(\xi^T x \leq \rho) \leq \epsilon$ for specified return threshold ρ , certainty parameter ϵ , and distributional set \mathcal{D}

Metrics

- * Empirical distribution for simulated returns
- * Empirical distribution tail probability

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	000000000	00	000
Simulation				
Introduction	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
--------------	------	---	-------------	----------
		000000000		
Simulation				

Introduction	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
		000000000		
Simulation				

22 / 37

Generate data from n hypothetical assets over m days according to the following:

- * Normal
 - true covariance matrix $\Sigma_0 \sim IW(2n, \sqrt{n}I)$ (inverse-Wishart)
 - true mean $\mu_0 \sim N(0, I)$
 - *n*-dimensional asset return vector $\xi \sim N(\mu_0, \Sigma_0)$
 - *m* observations $\xi_1, \ldots, \xi_m \sim N(\mu_0, \Sigma_0)$

Introduction	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
		000000000		
Simulation				

- * Normal
 - true covariance matrix $\Sigma_0 \sim IW(2n, \sqrt{nI})$ (inverse-Wishart)
 - true mean $\mu_0 \sim N(0, I)$
 - *n*-dimensional asset return vector $\xi \sim N(\mu_0, \Sigma_0)$
 - *m* observations $\xi_1, \ldots, \xi_m \sim N(\mu_0, \Sigma_0)$
- * Beta: *m* observations from each of *n* assets distributed as Beta(1 + n i, 1 + i) for i = 1, ..., n.

22 / 37

Introduction	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
		000000000		
Simulation				

- * Normal
 - true covariance matrix $\Sigma_0 \sim IW(2n, \sqrt{n}I)$ (inverse-Wishart)
 - true mean $\mu_0 \sim N(0, I)$
 - *n*-dimensional asset return vector $\xi \sim N(\mu_0, \Sigma_0)$
 - *m* observations $\xi_1, \ldots, \xi_m \sim N(\mu_0, \Sigma_0)$
- * Beta: *m* observations from each of *n* assets distributed as Beta(1 + n i, 1 + i) for i = 1, ..., n.
- * Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn from normalized uniform variates

22 / 37

Goal:

Introduction	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
		000000000		
Simulation				

- * Normal
 - true covariance matrix $\Sigma_0 \sim IW(2n, \sqrt{n}I)$ (inverse-Wishart)
 - true mean $\mu_0 \sim N(0, I)$
 - *n*-dimensional asset return vector $\xi \sim N(\mu_0, \Sigma_0)$
 - *m* observations $\xi_1, \ldots, \xi_m \sim N(\mu_0, \Sigma_0)$
- * Beta: *m* observations from each of *n* assets distributed as Beta(1 + n i, 1 + i) for i = 1, ..., n.
- * Normal Mixture: repeat Normal procedure for 2-5 Gaussians with mixture probabilities drawn from normalized uniform variates

22 / 37

Goal: ensure that we achieve in excess of $ho=1/3 imes\hat\mu$ for $\hat\mu$ the unconstrained, expected return for new samples

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	00000000	00	000
Results I				

Figure: Normal simulation: we observe nearly identical performance from all three methods

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	000000000	00	000
Results II				

return

0.25

return

beta: 1000 datasets with 1000 simulations on same data

Figure: Beta simulation

0.8

2

0.05

* Top simulations: $\xi_i \sim \text{Beta}(1 + n - i, 1 + i)$ for $i = 1, \dots, n$

- Clear which asset to choose; DRCC shows strong upside
- * Bottom simulations: $\xi_i \sim \text{Beta}(10/i, 7/i)$ for i = 1, ..., n

 Clear how to be conservative; DRCC shows strong downside prevention

イロン イロン イヨン イヨン 三日

0.30

	DRCC	Numerical Studies: Portfolio Optimization	Conclusions	Appendix
0000000000	00000	000000000	00	000
Results III				

Figure: GMM simulation study, top: 2 mixture components, bottom: 5 mixture components

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
		000000000		
Overview				

◆□ → ◆部 → ◆言 → ◆言 → 言 のへで 26/37

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Overview				

Analytic Problem		
Choose simple objective so	that we can focus on the constraint	
$\underset{x\in [-2,2]}{minimize}$	$f_0(x) = x$	
subject to	$\sup_{F \in \mathcal{D}} \mathbb{P}_F \left[\exists u : y(x, u, \xi) \coloneqq 1 + \xi + x \sin(u) \le 0 \right] \le \epsilon$	(11)
	$u \in [0, 2\pi], \xi \sim \mathcal{D}', \operatorname{supp}(\mathcal{D}') \subset [0, 1]$	

・ロ・・母・・ヨ・・ヨ・ シック

26 / 37

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Overview				

Analytic Problem

Choose simple objective so that we can focus on the constraint

$$\begin{array}{ll} \underset{x \in [-2,2]}{\text{minimize}} & f_0(x) = x \\ \underset{\text{subject to}}{\text{subject to}} & \underset{F \in \mathcal{D}}{\text{sup}} \mathbb{P}_F \left[\exists u : y(x, u, \xi) \coloneqq 1 + \xi + x \sin(u) \leq 0 \right] \leq \epsilon \\ & u \in [0, 2\pi], \quad \xi \sim \mathcal{D}', \quad \text{supp}(\mathcal{D}') \subseteq [0, 1] \end{array}$$

$$(11)$$

Goals

- * Approximate eq. (11) and solve DRCC problem (relaxed, computationally tractable version)
- * Attribution and sensitivity analysis for DRCC problem
- * Most adverse distribution for analytic problem
- * Most adverse distribution for DRCC approximation relative to analytic problem

DRCC Formulation	า			
0000000000	00000	00000000000	00	000
Introduction	DRCC	Numerical Studies: CICC	Conclusions	Appendix

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
		00000000000		
DRCC Formulation	on			

Solver

$$\begin{split} & \mathcal{T} := \inf_{t > 0} \left[\frac{1}{t} \mathbb{E}_F \left[\left[-(1 + \xi + \min_{u \in [0, 2\pi]} \{x \sin(u)\}) + t \right]_+ \right] \right] \\ & \hat{\mathcal{T}} := \frac{1}{t} \left[\frac{1}{N} \sum_{i=1}^N \left[-(1 + \xi_i + \min_{u \in [0, 2\pi]} \{x \sin(u)\}) + t \right]_+ + \delta \right] \\ & \hat{\mathcal{T}} := \frac{1}{t} \left[\frac{1}{N} \sum_{i=1}^N \left[-(1 + \xi_i + \min_{j=1, \dots, m} \{x \sin(u_j)\}) + t \right]_+ + \delta \right] \\ & \mathcal{T} \le \hat{\mathcal{T}} \quad \text{w.p. } q \ge 1 - \exp\left(\frac{-2N\delta^2}{\Gamma^2}\right) \end{split}$$

Using $\hat{\hat{\mathcal{T}}} \geq \hat{\mathcal{T}}$ gives same probabilistic relationship for approximate model

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
		00000000000		
Attribution				

Uniform distribution

- * Analytic VaR solution: $F^{-1}(\mathbb{P}_F[\xi < |x| 1]) \leq F^{-1}(\epsilon) \implies x^* = -(1 + F^{-1}(\epsilon))$
- * Analytic CVaR solution: $x^* = -(1 + \epsilon/2)$

Figure: Effect of analytic vs approximate CVaR. The blue line shows the solution \hat{x}^* of the CVaR problem using analytic CVaR; the orange line shows the solution \hat{x} of the CVaR problem using a sample-average CVaR approximation; the green line shows the solution x^* of the VaR problem using analytic VaR. We observe that the CVaR/VaR relaxation is loose and that the sample-average approximation is reasonably tight.

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
0000000000	00000	0000000000	00	000
Attribution				

Uniform distribution

- * Analytic VaR solution: $F^{-1}(\mathbb{P}_F[\xi < |x| 1]) \leq F^{-1}(\epsilon) \implies x^* = -(1 + F^{-1}(\epsilon))$
- * Analytic CVaR solution: $x^* = -(1 + \epsilon/2)$

Figure: Effect of analytic vs discretization. The blue line shows the solution of the CVaR problem using a sample-average CVaR approximation and the discretized solution of min_u $x \sin(u)$; the orange line shows the solution of the CVaR problem using a sample-average CVaR approximation and the analytic solution of min_u $x \sin(u)$. We observe that the discretization approximation is reasonably tight.

Adverse Distribution	on (Analytic V	'aR Problem)		
0000000000	00000	00000000000	00	000
Introduction	DRCC	Numerical Studies: CICC	Conclusions	Appendix

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
0000000000	00000	00000000000	00	000
Adverse Distrik	oution (Analyt	ic VaR Problem)		

Problem

Solve $\sup_{F \in \mathcal{D}} \{ \mathbb{P}_F [\xi < |x| - 1] \} \le \epsilon$ for F^*

Adverse Distribu	Adverse Distribution (Analytic VaR Problem)						
0000000000	00000	00000000000	00	000			
	DRCC	Numerical Studies: CICC	Conclusions	Appendix			

Problem

Solve
$$\sup_{F \in \mathcal{D}} \{ \mathbb{P}_F [\xi < |x| - 1] \} \le \epsilon$$
 for F^*

Approach: solve VaR via cdf

Characterize F by its left quantile function $F^-(t) = \inf\{z : F(z) \ge t\}$ so that

$$\sup_{F \in \mathcal{D}} \{ \mathbb{P}_F [\xi < |x| - 1] \} = \sup_{F \in \mathcal{D}} \{ F(|x| - 1) \} \le \epsilon$$

$$\implies F(|x| - 1) \le \epsilon \quad \forall F \in \mathcal{D} \implies |x| \le F^-(\epsilon) + 1 \quad \forall F \in \mathcal{D} \implies |x| \le \inf_{F \in \mathcal{D}} \{ F^-(\epsilon) \} + 1$$
(12)

★ロト ★御 と ★ 注 と ★ 注 と 二 注

29/37

	DRCC	Numerical Studies: CICC	Conclusions	Appendix
0000000000	00000	00000000000	00	000
Adverse Distrib	ution (Appro»	kimate CVaR Problem)	

Problem

Restrict to $\xi \sim \text{Bern}(p)$ and find worst p so that solution to

$$\begin{array}{ll} \underset{x,t}{\text{minimize}} & x\\ \text{subject to} & \frac{1}{N} \sum_{i=1}^{n} [-(1+\xi-|x|)+t]_{+} + \delta - t\epsilon \leq 0 \\ & -t \leq 0, \quad |x| \leq 2 \end{array}$$
(13)

is (1) overly-conservative or (2) overly-aggressive relative to analytic solution

Approach: p vs quantile

Given $x^* = -(1 + F^{-1}(\epsilon))$, where $F^{-1}(e) = \mathbb{1}\{e > 1 - p\}$ find p so that at $p \approx \epsilon$ we have

- * $\hat{x} < x^*$: choosing $p > 1 \epsilon \implies x^* = -2$ but approximation is conservative $\hat{x} = 1 \delta/(1 \hat{p}_1)$ (can solve $(c_1 = 0)$)
- * $\hat{x} > x^*$: choosing $p \le 1 \epsilon$ restricts the analytic solution to -1, but choosing $p \lesssim 1 \epsilon$ may generate datasets where $\hat{p}_1 > 1 \epsilon$ giving $\hat{x} < -1$ (can solve $(c_1) = (c_3)$)

	()	(((((((((((((((((((
0000000000	00000	0000000000	00	000
	DRCC	Numerical Studies: CICC	Conclusions	Appendix

Adverse Distribution (Approximate CVaR Problem)

Problem

Restrict to $\xi \sim \text{Bern}(p)$ and find worst p so that solution to

$\underset{x,t}{minimize}$	x		
subject to	$\hat{p}_1(t+ x -2)+\hat{p}_0(t+ x -1)+\delta-\epsilon t\leq 0$	(c_1)	
	$\hat{p}_1(t+ x -2)+\delta-\epsilon t\leq 0$	(c_2)	(14)
	$\hat{p}_0(t+ x -1)+\delta-\epsilon t\leq 0$	(c_3)	()
	$\delta - \epsilon t \leq 0$	(<i>c</i> ₄)	
	$-t \leq 0, x \leq 2$		
is (1) overly-conservative or	(2) overly-aggressive relative to analytic solution		

Approach: p vs quantile

Given $x^* = -(1 + F^{-1}(\epsilon))$, where $F^{-1}(e) = \mathbb{1}\{e > 1 - p\}$ find p so that at $p \approx \epsilon$ we have

- * $\hat{x} < x^*$: choosing $p > 1 \epsilon \implies x^* = -2$ but approximation is conservative $\hat{x} = 1 \delta/(1 \hat{p}_1)$ (can solve $(c_1 = 0)$)
- * $\hat{x} > x^*$: choosing $p \le 1 \epsilon$ restricts the analytic solution to -1, but choosing $p \lesssim 1 \epsilon$ may generate datasets where $\hat{p}_1 > 1 \epsilon$ giving $\hat{x} < -1$ (can solve $(c_1) = (c_3)$)

Introduction	DRCC	Numerical Studies: CICC	Conclusions	Appendix
	00000	000000000	00	000
Empirical Results				

Figure: top: varying p for fixed ϵ , bottom: overly-aggressive approximation $\langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

	DRCC	Numerical Studies	Conclusions:	Appendix
0000000000	00000	0000000000	00	000
Outline				

1 Introduction

- Motivation
- Uncertain Optimization
 - Uncertainty
 - Robust Optimization
 - Stochastic Optimization
- Data-driven Optimization
 - Risk Measures
 - Concentration of Measure

2 DRCC

- Formulation
- Approximation
- **3** Numerical Studies
 - Portfolio OptimizationCICC

4 Conclusions

- DRCC
- Recent Work
- Notes

	DRCC	Numerical Studies	Conclusions: DRCC	Appendix	
0000000000	00000	0000000000	•0	000	
DRCC Conclusions					

Computation

- * Tractable for small-medium sized problems
- * Require large historical samples to approximate tail expectation
- * Robust to outliers or influential samples?

Empirical

- * Outperformed standard (limited-assumption) techniques on portfolio problem across distributions
- * Bounded support not much of an issue for feasibility (provided enough samples)

Analytic

- $\ast~\mbox{CVaR}$ is a useful tool and starting point
- * Duality theory
- * Combines optimization, statistics, probability

	DRCC	Numerical Studies	Conclusions: Recent Work	Appendix
			0	
Recent Work				

Flavor

- * Regularization framework: CVaR as expectation and mean deviations, robust CVaR [7]
- * Empirical process theory
 - empirical likelihood confidence intervals related to finding uncertainty sets given by KL-div arguments [5]
 - general conditions under which robust solutions are consistent [5]
- * Hypothesis testing for uncertainty/ambiguity sets
 - safe-approximation to ambiguous chance constraints by bounding VaR with a ψ approximation and finding corresponding convex set through duality (epigraph)
 - null hypothesis $F = F_0$ and distributions which pass certain hypothesis tests (e.g., Pearson χ^2 , or KL-div tests) at α level define \mathcal{U} [2]
- * CVaR / Wasserstein ball
 - set Wasserstein balls around an empirical data-based distribution which allows controllable conservativeness by adjusting the Wasserstein radius [8]
 - Wasserstein ambiguity set centered at empirically estimated distribution [10]

	DRCC	Numerical Studies	Conclusions	Appendix: References
0000000000	00000	0000000000	00	•••
References I				

- D. BERTSIMAS AND D. BROWN, *Constructing uncertainty sets for robust linear optimization*, Operations Research, 57 (2009), pp. 1483–1495.
- D. BERTSIMAS, V. GUPTA, AND N. KALLUS, *Data-driven robust optimization*, Mathematical Programming, (2017).
- D. BERTSIMAS AND A. THIELE, *Robust and data-driven optimization: Modern decision-making under uncertainty*, Informs: Tutorials in Operations Research, (2014), pp. 95–122.
- E. DELAGE AND Y. YE, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Operations Research, 58 (2010), pp. 595–612.
- J. DUCHI, P. GLYNN, AND H. NAMKOONG, *Statistics of robust optimization: A generalized empirical likelihood approach*, (2016).
- Y. EMOLIEV AND R. J.-B. WETS, Numerical Techniques for Stochastic Optimization, Springer-Verlag, 1988.
- J.-Y. GOTOH, K. SHINOZAKI, AND A. TAKEDA, *Robust portfolio techniques for mitigating the fragility of cvar minimization and generalization to coherent risk measures*, Quantitative Finance, 13 (2013), pp. 1621–1635.

	DRCC	Numerical Studies	Conclusions	Appendix: References
0000000000	00000	0000000000	00	•••
References II				

- Y. GUO, K. BAKER, E. DALL'ANESE, Z. HU, AND T. SUMMERS, *Stochastic optimal power flow based on data-driven distributionally robust optimization*, (2017).
 - W. HOEFFDING, *Probability inequalities for sums of bounded random variables*, Journal of the American Statistical Association, 58 (1963), pp. 13–30.
- P. MOHAJERIN ESFAHANI AND D. KUHN, *Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations*, Mathematical Programming, (2017).
- A. NEMIROVSKI AND A. SHAPRIO, *Convex approximations of chance constraints*, SIAM Journal of Optimization, 17 (2006), pp. 969–996.
- R. T. ROCKAFELLER AND J. O. ROYSET, *Random variables, monotone relations, and convex analysis*, Springer, 148 (2014), p. 297.

DRCC	Numerical Studies	Conclusions	Appendix: Notes
			000