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Abstract—Despite cascading failures being the central cause of
blackouts in power transmission systems, existing operational and
planning decisions are made largely by ignoring their underlying
cascade potential. This paper posits a reliability-aware AC Optimal
Power Flow formulation that seeks to design a dispatch point which
has a low operator-specified likelihood of triggering a cascade
starting from any single component outage. By exploiting a recently
developed analytical model of the probability of component failure,
our Failure Probability-constrained ACOPF (FP-ACOPF) utilizes
the system’s expected first failure time as a smoothly tunable and
interpretable signature of cascade risk. We use techniques from
bilevel optimization and numerical linear algebra to efficiently
formulate and solve the FP-ACOPF using off-the-shelf solvers. Ex-
tensive simulations on the IEEE 118-bus case show that, when com-
pared to the unconstrained and N-1 security-constrained ACOPF,
our probability-constrained dispatch points can significantly lower
the probabilities of long severe cascades and of large demand losses,
while incurring only minor increases in total generation costs.

Index Terms—AC optimal power flow, cascading failures.

I. INTRODUCTION

ACASCADING failure in a power transmission system
refers to a sequence of dependent outages of individual

system components that successively disable parts of the grid,
leading to a significant loss of served power or large blackout in
the worst case. Accounts of major blackouts reveal that cascad-
ing failures are often triggered by an initial event that is largely
unpredictable (such as extreme weather) but are sustained by
subsequent events that are causally linked via Kirchhoff’s laws
and automatic control actions of protection devices. For exam-
ple, the outage of a single component can lead to redistribution
of power flows in the remainder of the network in a way that
can cause large overcurrents on some transmission lines. This,
in turn, may trigger protection relays to disconnect these lines
automatically if the current flow exceeds some threshold rating,
or it may lead to eventual thermal failure if the overcurrents
remain sustained for a long time.
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The large direct and indirect costs associated with blackouts,
along with mandatory standards set forth by the North American
Electric Reliability Corporation (NERC) to address cascading
outages, have motivated the development of a plethora of tools
for the simulation and analysis of cascading failures; see re-
views [1]–[4] and references therein. These tools can be broadly
classified as (a) complex network approaches that consider the
pure topological properties of power networks while ignoring
or simplifying the underlying physics (e.g., see [5], [6]), (b)
high-level statistical models built either on historical/simulation
data or on simplified power system physics (e.g., see [7], [8]),
(c) quasi-steady-state methodologies that utilize DC or AC
power flow (steady state) models, typically in conjunction with
models of protection mechanisms or operator interventions [9]–
[13], and rely on Monte Carlo or enumerative sampling (e.g.,
see [14]–[16]), (d) dynamics-based models in which the state
evolution is resolved with a physics-based representation of the
grid dynamics (e.g., see [17], [18]) to study post-fault transient
dynamics [19], synchronization [20]–[22], or behavior over
longer time horizons [23]–[25].

While these tools have proved immensely useful in deepening
our understanding of cascading failures, their use for risk mitiga-
tion and decision-making have been largely restricted to limiting
the propagation of a cascading failure, e.g., via controlled load
shedding or intentional islanding, after severe contingencies
have already occurred (e.g., see [26]–[28]). Existing practices
for the prevention of cascading failures before they occur, by
tuning and modifying the controllable properties of the power
network, has largely relied upon N − k security criteria and
simulation-based contingency analyses as notional surrogates
for reducing cascading likelihood.

Although simulation-based tools can influence long-term cas-
cade mitigation solutions, such as line capacity or generator
margin allocations and protection system enhancements (e.g.,
see [29]–[31]), they are fundamentally limited in preventing
cascades in short-term operations such as economic dispatch
or optimal power flow. This is because they do not provide any
direct functional relationship between control parameters and
cascade potential, or they entail expensive Monte Carlo sampling
and numerical integration requirments and are thus challenging
to incorporate within optimization algorithms.

This work proposes to incorporate in the classical ACOPF
model, an analytical – as opposed to simulation-based – model
of cascade severity that is an explicit function of the network
properties and dispatch point. In contrast to existing methods,
we aim to determine a dispatch point subject to the constraint that
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the probability of individual component failure remains below
an operator-prescribed threshold. Our model capitalizes upon
results from [32], which in contrast to other approaches for
simulating cascading failures, provides an analytic expression
for the failure probability as a function of the dispatch point.
This is achieved by modeling Gaussian load and generation
fluctuations in the AC power flow dynamics, and interpreting the
latter as the diffusion of a particle in an energy landscape subject
to stochastic forcing. Large deviations theory then provides
the means to analytically relate the failure probability to the
underlying energy surface.

For a given system state (consisting of voltages and power
flows) at equilibrium, the analytical expression for the fail-
ure probability of an individual component requires solving a
nonlinear optimization problem that computes a “most likely”
failure state starting from this equilibrium state. However, since
the latter is contingent on the dispatch point, explicitly con-
straining the failure probability of an individual component,
or of a cascading sequence of multiple components, is tanta-
mount to solving a bilevel optimization problem. We settle for
the former and demonstrate that constraining individual failure
probabilities, which is equivalent to increasing the system’s
expected first failure time–or decreasing its failure rate– can
be an effective surrogate for constraining the probability of a
cascading failure sequence. Solving the bilevel model, however,
is computationally challenging since it is nonlinear, nonconvex,
and involves eigenvalues and determinants of high-dimensional
matrices that scale with the network size. Nevertheless, we show
that this eigenvalue- and determinant-constrained model can be
reformulated entirely algebraically and solved efficiently using
standard solvers, if we exploit the low-rank nature of the failure
constraints along with the first- and second-order optimality
conditions of the nested problem.

Our key finding is that it is possible to modify the dispatch
point so as to satisfy a prescribed threshold of failure probability.
Specifically, the system’s expected first failure time, and hence,
the probability of cascading over a given time horizon, can be
lowered significantly without incurring vastly higher generation
costs or load shedding.

We believe this is the first work that captures some notion
of cascading risk in operational dispatch. Although it can be
viewed as a probabilistic N − 1 variant, our approach offers
several advantages over classicalN − kmodels. The first crucial
difference is that, by tuning the system’s failure rate limit, we
can systematically and smoothly explore the trade-offs between
cascade potential, dispatch costs and operator conservatism,
without significant increase in computational complexity. In
contrast, N − k approaches must resort to a non-smooth control
of k to achieve the same objective, while invariably incurring a
sharp increase in combinatorial complexity. Another subtle, yet
practically useful, advantage of our approach is its interpretabil-
ity. Indeed, the benefit (in terms of reliability) of increasing k
in N − k approaches, is difficult to convey outside the domain.
Our approach, on the other hand, allows the system operator to
decide between a failure rate limit of 10−6s−1 or 10−15s−1 (for
example), which is equivalent to deciding between observing
the first failure once every 106 or 1015 seconds. This is a

statement that is better aligned with the philosophy of regulatory
constraints which tend to be in occurrences per unit of time.

The paper is organized as follows. Section II presents as-
sumptions, and reviews the failure probability model of [32].
Section III presents the failure probability-constrained ACOPF
model along with its reformulation. Section IV demonstrates
the effectiveness of our method via extensive simulations, and
Section V offers conclusions and directions for future work.

II. FAILURE PROBABILITY MODEL

A. Notation

We use N = {1, . . . , nb} to denote the set of buses, and
L ⊆ N ×N to denote the set of transmission lines, where
l = (i, j) ∈ L is a line from bus i and to bus j. We denote the
set of generators by G = {1, . . . , ng}, and let Gi be the set
of generators connected to bus i ∈ N ; note that G = ∪i∈NGi.
For ease of notation, we define N′ := {i ∈ N : Gi = ∅} to
denote the set of non-generator buses, i.e., those that are not
connected to any generator and similarly, L′ := {(i, j) ∈ L :
Gi = ∅ or Gj = ∅} to denote the set of lines that are connected
to at least one non-generator bus. The nodal admittance matrix
Y = G+

√−1B ∈ C
nb×nb with conductance and susceptance

matrices G ∈ Rnb×nb and B ∈ Rnb×nb , respectively.
We denote active and reactive power generations by pg, qg ∈

Rng , active and reactive power demands by pd, qd ∈ Rnb , and
net active and reactive powers by pnet, qnet ∈ Rnb , where
we define pnet,i := pd,i −

∑
k∈Gi

pg,k and qnet,i := qd,i −∑
k∈Gi

qg,k for i ∈ N . The voltage magnitudes and angles are
denoted by V ∈ Rnb and θ ∈ Rnb , and the generator angular
velocities are denoted by ω ∈ Rng .

For a vector z ∈ C
n, we use ‖z‖ and z∗ to denote its Eu-

clidean norm and Hermitian transpose, respectively, and we use
ez and log(z) to denote the vectors (ez1 , . . . , ezn) ∈ C

n and
(log(z1), . . . , log(zn)) ∈ C

n. Given vectors z, z̃ ∈ C
n, we use

z ◦ z̃ to denote the Hadamard product (z1z̃i, . . . , znz̃n) ∈ C
n.

For a matrix A ∈ C
n×n, we use ρ(A), det(A), and adj(A) to

denote its spectral radius, determinant and adjugate, respec-
tively, and A � 0 (� 0) to indicate that it is positive definite
(semi-definite). For a given matrix A � 0 and vector z ∈ C

n,
we use ‖z‖A to denote

√
z∗Az.

In formulating the probability model, it will be convenient
to divide the system state vector (pg, qg, V, θ, ω) ∈ Rm (m :=
3ng + 2nb) into two distinct sets. After selecting an arbitrary
generator bus σ ∈ N \ N ′, |Gσ| = 1, as the slack bus in the
steady-state context and reference bus in the dynamics con-
text, we collect all voltage magnitudes at non-generator buses,
and phase angles and angular velocities at non-slack buses in
the state vector x = ({Vi}i∈N ′ , {θi}i∈N\{σ}, {ωi}i∈G\Gσ

) ∈ Rd,
d = |N ′|+ |N |+ |G| − 2. The remaining voltage components,
angular velocities and power generations are aggregated in the
vector y = ({Vi}i∈N\N ′ , θσ, ωσ, pg, qg) ∈ Rm−d. This partition
of the system variables, illustrated in Table I, is purely for
notational convenience. In particular, any specified value of y
implicitly defines a set of state vectors x that solve the power
flow equations, as we shall elaborate in Section II-C.
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TABLE I
PARTITION OF SYSTEM VARIABLES INTO SUB-VECTORS x AND y

B. Assumptions

Motivated by the automatic control actions of protection
relays, we assume that individual system components fail in
a deterministic manner according to a component-specific state
equation. Specifically, we assume that a component, such as a
transmission line l ∈ L, fails if the value of a certain function
Θl : Rm 
→ R at the current state (x, y) exceeds a critical value
Θmax

l . Furthermore, we assume that after failure, a component
remains failed over the entire dispatch horizon of the ACOPF.

The algebraic state functions Θ can be any continuously
differentiable function of the state vector (x, y), and hence, it
can be used to model various component failures, such as under-
voltage load shedding at buses or line surges in transformers.
For the purpose of computing a dispatch point, however, we
assume that once initiated, component failures occur only due
to relay trips caused by current overloads in transmission lines.
Suppose that Itripl denotes the emergency current rating of a
line l = (i, j) ∈ L. In this case, one can define Θl(x, y) to be
the square of the magnitude of current flow in line l (which
depends only on the voltages and phase angles at its terminal
buses), and Θmax

l to be the square of the corresponding rating:

Θl(x, y) =
(|Yij |

∣∣Vie
iθi − Vje

iθj
∣∣)2

= |Yij |2
(
V 2
i + V 2

j − 2ViVj cos(θi − θj)
)
,

Θmax
l = (Itripl )2. (1)

This is partly because it simplifies the exposition, and partly
because the corresponding failure model has already been stud-
ied and validated against real cascade data in [32], [33]. We
note, however, that the methodology does not preclude us from
considering more general definitions of Θ. Importantly, the
simulations in Section IV model several other protection mech-
anisms beyond current overloads.

In addition, we shall assume that (i) the network is lossless1,
i.e., G = 0, and (ii) only the subset L′ of transmission lines
that connect to at least one non-generator bus have a nonzero
likelihood of failing because of stochastic fluctuations in active
and reactive power demand.

C. Analytical Model of Line Failures

We model the grid’s electro-mechanical behavior using a sys-
tem of stochastic differential equations (SDE), by introducing

1This assumption is not particularly restrictive since many high-voltage power
transmission networks typically have resistance/reactance ratios below 0.2.
Moreover, the standard DCOPF model for dispatch widely used in industry
explicitly relies on this assumption [34]; in contrast, our model is far more general
since we also consider nonlinearities, reactive powers and voltage magnitudes
that the DCOPF model does not.

a scalar noise parameter τ > 0 into the following variant of the
standard, structure-preserving model [35]–[39]:

dxτ
t = (J − S)∇xH(xτ

t , y)dt+
√
2τSdWt. (2)

Here, xτ
t ∈ Rd denotes the system state at time t, J andS rep-

resent appropriate system matrices, and Wt is a d-dimensional
vector of independent Wiener processes. When τ = 0, (2) mod-
els the deterministic dynamics of the state variables in x as a
function of the input vector y. Specifically, it is a singularly-
perturbed version [37] of the classical differential-algebraic
structure-preserving model [40, Chapter 7]. When τ = 0, (2)
includes the standard second-order swing equations employed in
the classical model, but augments its constant active power load
modeling assumption by adding linear frequency-dependent
load damping terms Dl to the active power loads (see, e.g., [41])
and voltage-dependent perturbation terms Dv to the reactive
power loads. The parameters Dl and Dv control the rates at
which the phase angles and load voltages approach the real
and reactive power flow equation manifolds, respectively [36].
Crucially, (2) converges to the classical model as the noise
parameter τ → 0 and damping terms Dl, Dv → 0 but with the
added advantages of global well-posedness (when τ = 0) and
modeling Gaussian perturbations in active and reactive power
demands (when τ > 0). This model has been widely used for
transient stability analysis in both deterministic and stochastic
regimes [35], [42].

The detailed differential equations encapsulated within (2),
including definitions of J andS, can be found in [32], [35], [43].
The energy functionH is then obtained as the first integral of the
deterministic dynamics, leading to the gradient-based formula-
tion (2). Notably, the integral admits the following closed-form
expression :

H(x, y) := 1
2ω

�Mω + 1
2 (V ◦ eiθ)∗ Y (V ◦ eiθ)

+ p�netθ + q�net log(V ), (3)

where M is the ng × ng diagonal matrix of generator masses.
Unlike (1), the right-hand side of (3) depends on all components
of x and y. It is worth pointing out that (3) has been widely
used as a Lyapunov function for transient stability analysis and
dynamic control of the structure preserving swing dynamics
model in deterministic settings [44], [45], and it is closely related
to the widely-used transient energy function of [46]. Similar to
the latter, which is used to measure distance to instability, we
use (3) to measure the probability of the stochastically perturbed
dynamics to reach a triggering surface.

We note that the vector y is assumed to have been fixed to
appropriate values a priori, and we shall return to choosing
a value for y in the subsequent section when we describe the
ACOPF formulation. For now, observe that the structure of the
energy function (3) ensures that, for any specified value of y,
any point x ∈ Rd that satisfies ∇xH(x, y) = 0 is a solution to
the lossless power flow equations:

pnet,i +
∑
j∈N

BijViVj sin(θi − θj) = 0, i ∈ N , (4)

qnet,i −
∑
j∈N

BijViVj cos(θi − θj) = 0, i ∈ N . (5)
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In particular, any local energy minimizer,

x̄(y) ∈ arg min
x∈Rd

H(x, y) (6)

defines a feasible solution to (4), (5) and serves as a stable
equilibrium for the network dynamics defined by y. To simplify
notation, we drop the dependence of x̄ on y in the remainder of
the paper.

Under the SDE model (2) initialized at xτ
0 = x̄, the failure

probability of a line l ∈ L′ (considered in isolation from the rest
of the network) can be quantified by its so-called first passage
time. The latter is defined to be the first time at which the system
state xτ

t triggers the failure condition (1) for line l. Assuming
Θl(x̄, y) < Θmax

l , this is equivalent to

T τ
l (y) := inf{t > 0 : Θl(x

τ
t , y) ≥ Θmax

l }. (7)

By exploiting results from large deviations theory [47], [48],
it was shown in [32] that, as τ → 0, T τ

l (y) is an exponential
random variable whose mean satisfies the following relation:

lim
τ→0

τ log (E [T τ
l (y)]) = min

x:Θl(xτ
t ,y)=Θmax

l

H(x, y)−H(x̄, y)

(8)
A point at which the minimum is obtained is called the most

likely failure point and is defined as

x�
l (y) := arg min

x∈Rd

{H(x, y) : Θl(x, y) = Θmax
l } , (9)

where we have implicitly assumed x�
l to be unique2. As before,

we drop the dependence of x�
l on y to simplify notation.

For finite values of τ , we can thus use relation (8) to compute
a log-approximate failure rate (i.e., the reciprocal of the mean
failure time). In addition to this log-approximation, a subexpo-
nential correction to the failure rate was also obtained in [32]
yielding the following expressions:

λτ
l (y) := pf1l (y)× efl(y) (10)

pf1l (y) := pf0l (y)×
(
1 +

τ

H(x�
l , y)−H(x̄, y)

)
. (11)

pf0l (y) := ‖∇xH(x�
l , y)‖2S

√
det∇2

xxH(x̄, y)

2πτC�
l (y)

(12)

efl(y) := exp

[
−H(x�

l , y)−H(x̄, y)

τ

]
, (13)

whereC�
l (y) is a factor accounting for the curvature of the failure

surface in the vicinity of x�
l , and is given by:

C�
l (y) := ∇�

xH(x�
l , y) adj (Xl(y))∇xH(x�

l , y) (14)

Xl(y) := ∇2
xxH(x�

l , y)− μ�
l∇2

xxΘl(x
�
l , y), (15)

where μ�
l ∈ R is the optimal Lagrange multiplier in the con-

strained optimization problem (9). In (10)–(13), pf and ef stand
for the pre-factor and exponential factor, respectively. The lat-
ter follows directly from (8). The former is a subexponential
correction that is obtained by quantifying how the probabil-
ity distribution over the system’s state space changes with

2This is not a strong assumption based on the validation in [32].

time. Specifically, from an initial quasistationary ensemble [48]
of particles distributed as pτqst(x) ∝ exp[−τ−1(H(x, y)−
H(x̄, y))], probability mass is lost over time through the surface
{x ∈ Rd : Θl(x, y) = Θmax

l }. A Laplace integral approxima-
tion of this probability yields the (zeroth order) failure rate:
pf0l (y)× efl(y).However, for large values of τ , this zeroth order
expression can lead to non-physical behavior as the 1/

√
τ term

in pf0l (y) may cause the failure rate to decrease as τ increases.
Therefore, the first order correction in (11) is used to remedy this
behavior, and it has demonstrated strong empirical performance
in approximating the failure rate across a wide range of τ [32].

In summary, the distribution of failure times for line l ∈ L′ can
be well-approximated by T τ

l (y) ∼ Exp(λτ
l (y)), and therefore,

the probability of observing line l fail in the first t seconds can
be given by

P (T τ
l (y) ≤ t) = 1− exp [−λτ

l (y)t] . (16)

A noteworthy feature of this model is that (16) gives a closed-
form expression for the failure probability, thus avoiding the
need for direct integration of the differential model (2).

III. FAILURE PROBABILITY-CONSTRAINED AC OPTIMAL

POWER FLOW FORMULATION

A. Conceptual Formulation

The probability of transmission line failure (16) is a function
of y = ({Vi}i∈N\N ′ , θσ, pg, qg), the voltage magnitudes at gen-
erator buses, the voltage angle at the slack bus and the active and
reactive power generations. The choice of y also determines the
equilibrium operating point x̄(y) through the power flow (4), (5);
we shall denote these simply as x = ({Vi}i∈N ′ , {θi}i∈N\{σ}, )
and along with the vector y, they constitute decision variables3

in our Failure Probability-constrained ACOPF (FP-ACOPF)
formulation:

minimize
x,y

∑
k∈G

ck(pg,k) (17)

subject to (4)−(5),

pmin
g,k ≤ pg,k ≤ pmax

g,k , k ∈ G, (18)

qmin
g,k ≤ qg,k ≤ qmax

g,k , k ∈ G, (19)

V min
i ≤ Vi ≤ V max

i , i ∈ N , (20)

Θl(x, y) ≤ (I liml )2, l ∈ L, (21)

λτ
l (y) ≤ λlim

l := −t−1
H log

(
1− εliml

)
, l ∈ L′ (22)

The objective function (17) minimizes the cost of generation
where ck is a function representing the cost of generating active
power pg,k at generator k ∈ G. The constraints (18), (19) and
(20) ensure that the power generations and voltage magnitudes
stay within predefined limits. The constraint (21) limits the
amount of current flow on the transmission lines, where we have
distinguished the flow limit I liml from the value Itripl used in
the failure model (1). The latter quantity is the value at which

3Note that we do not include the frequency variables ω as decisions, since we
can set ω = 0 without loss of optimality.

Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on November 24,2025 at 03:20:20 UTC from IEEE Xplore.  Restrictions apply. 



SUBRAMANYAM et al.: FAILURE PROBABILITY CONSTRAINED AC OPTIMAL POWER FLOW 4687

protection relays would automatically disconnect the line, and
it is typically much larger than the former, which is determined
based on thermal considerations. Finally, constraint (22) im-
poses an upper bound on the failure rate of line l ∈ L′, which
by definition, is equivalent to delaying its expected failure time
to be greater than (λlim

l )−1.
Observe that, using expression (16), the failure rate con-

straint (22) is equivalent to a chance constraint which ensures
that the probability of line l ∈ L′ failing over a time horizon tH
is less than some operator-prescribed limit εliml (say 1%):

P (T τ
l (y) ≤ tH) ≤ εliml , l ∈ L′. (23)

Constraint (23) only limits the failure probability of a single
line. While it can also be used as an approximation for limiting
the probability of a cascading failure sequence involving more
than one line4, we highlight that assessing the true probability of
a cascading sequence needs careful consideration and modeling
of subsequent events, including system dynamics and protection
behavior, which is outside the scope of the proposed optimiza-
tion model. The individual failure rate constraint (22) is thus
closer in spirit to a probabilistic N − 1 constraint, as opposed
to a full-fledged cascading failure constraint.

The presented model is a standard ACOPF formulation with
the exception of the failure rate constraint (22). We now present
an efficient reformulation of these rate constraints that can be
incorporated into standard optimization solvers.

B. Reformulation of Failure Rate Constraints: Key Steps

Constraining the failure rate via (22) is nontrivial because
it involves (i) the solution of a nested nonconvex optimiza-
tion problem (9) to obtain x�

l (y), and (ii) constraints involv-
ing determinants of large matrices, namely ∇2

xxH(x, y) and
Xl(y), see (12) and (14). This section shows that these can be
circumvented by exploiting the low-rank property of the line
failure function Θl, and a partial Talyor expansion of the energy
function H around the equilibrium operating point x.

1) Low Rank Factorization of Failure Function: We shall
capitalize on the fact that, the Hessian of the failure function
Θl admits a low-rank factorization of the form:

∇2
xxΘl(x, y) = Ql(x, y)Kl(x, y)Q

�
l (x, y), (24)

where Ql(x, y) is a d× rl matrix, with rl � m and Kl(x, y) is
a rl × rl diagonal matrix. Observe that this low-rank structure
is natural whenever Θl is a function of a small number of
state variables, as is the case when Θl models the failure of
transmission lines, system buses, generators or transformers.

Although such a low-rank factorization can be computed nu-
merically (e.g., using an eigenvalue decomposition), it can also

4For example, limiting the probability that line l2 will fail after line l within
time tH can be enforced via:∫ tH

0

P
(
T τ
l (y) ∈ [t, t+ dt]

)
P
(
T τ
l2
(y;Y ′) ∈ [t, tH ]

)
dt ≤ εlim,

where T τ
l2
(y;Y ′) is the failure time of line l2 calculated using a modified

admittance matrix Y ′ after removing line l. Since both probabilities in the
above integral involve exponential random variables (16), it can be analytically
expressed as a single algebraic constraint using the corresponding failure rates.
Observe that this probability is upper bounded by the left-hand side of (23).

be obtained analytically in several cases, such as in the examples
of Section II-B. To illustrate this, [49, Appendix A] presents
explicit closed-form expressions for Ql and Kl when Θl is the
line overcurrent function (1). In particular, it shows that rl = 3
for a line l = (i, j) where both i, j ∈ N ′ are non-generator
buses, whereas rl = 2 otherwise. The fact that the rank rl ≤ 3
has nothing to do with the specific functional form of (1); in fact,
rl ≤ 3 will always hold whenever Θl is a function only of Vi, Vj

and the angle difference θi − θj .
2) Taylor Approximation of Energy Function: The value of

the energy function at the most likely failure point, H(x�
l , y),

is approximated using a quadratic Taylor polynomial centered
around the equilibrium operating point x that is determined by
the ACOPF formulation:

H(x�
l , y) = H(x, y) +

1

2
(x�

l − x)�∇2
xxH(x, y)(x�

l − x) (25)

where we have ignored the first-order term since the FP-ACOPF
constrains x to satisfy the power flow (4), (5), which are equiv-
alent to ∇xH(x, y) = 0. We shall comment on the accuracy
of (25) in the next subsection.

C. Reformulation of the ‘Most Likely Failure Point’ Problem

Equations (24) and (25) can be used to reformulate the nested
nonconvex most likely failure point optimization problem (9).
In particular, the following proposition shows that they can be
used to generate tractable algebraic constraints under which the
solution of (9) can be characterized by its first- and second-order
optimality conditions

Proposition 1: Fix a line l ∈ L′, and assume that x, x�
l ∈ Rd

and y ∈ Rm−d are such that:
1) ∇2

xxH(x, y) � 0, and
2) the Taylor approximation (25) is applicable.
If x�

l and μ�
l ≥ 0 satisfy (26)–(28), then x�

l is a local solution
of the optimization problem (9).

∇2
xxH(x, y)(x�

l − x) = μ�
l∇xΘl(x

�
l , y) (26)

Θl(x
�
l , y) = Θmax

l (27)

μ�
l ρ (Al) < 1, (28)

where Al := Kl(x
�
l , y)Q

�
l (x

�
l , y) [∇2

xxH(x, y)]−1 Ql(x
�
l , y) is

a rl × rl matrix.
Proof: See [49, Appendix B] of the preprint. �
Equations (26) and (27) are the first-order optimality condi-

tions, whereas the spectral inequality (28) is derived from the
second-order optimality condition of the nested problem (9). It is
noteworthy that the matrix Al in the left-hand side of the latter
inequality is a small rl × rl matrix, and hence it is possible
to reformulate the inequality in a completely algebraic form
without requiring a numerical eigenvalue computation.

When rl = 2, it can be verified (e.g., using the characteristic
polynomial of Al) that inequality (28) is equivalent to:

μ�
l tr(Al)− (μ�

l )
2 det(Al) < 1, (29)

where the trace and determinant can be computed in algebraic
closed-form, since Al is a 2× 2 matrix.

When rl = 3, it is nontrivial to get a tractable reformulation,
since Al need not be symmetric. We consider two cases.
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� If Kl(x
�
l , y) � 0, then μ�

l ρ(Al) < 1 is equivalent to

μ�
l ρ(Âl) < 1, Âl := K

1
2

l Q�
l [∇2

xxH(x, y)]−1 QlK
1
2

l . This
is a symmetric matrix, and hence, we can use Sylvester’s
criterion to enforce that all rl leading principal minors of
I − μ�

l Âl (which are computable in algebraic closed-form)
must be positive. A similar trick can be used if Kl(x

�
l , y)

is negative definite.
� If Kl(x

�
l , y) is indefinite, then it is difficult to enforce the

spectral inequality, and we settle for a relaxation which
enforces a constraint on the sum of its rl eigenvalues:

μ�
l tr(Al) < rl, (30)

where again the trace can be computed in closed-form.
We close with some remarks on the assumptions of Propo-

sition 1. The first assumption requires that the Hessian of the
energy function at the equilibrium point x is positive definite.
Note that it is satisfied whenever x is obtained via the energy
minimization problem (6). Although using the power flow (4),
(5) as a surrogate for the latter cannot guarantee this condition,
we found that it was almost never violated in our experiments.
With regards to the second assumption, the Taylor approxima-
tion (25) is guaranteed to be accurate only when x�

l is near x. We
provide empirical evidence in Section IV that the approximation
is not severe.

D. Treatment of High-Dimensional Determinants

Using equations (10) and (11), the failure rate constraint (22)
can be equivalently written as:

λτ
l (y) = pf0l (y) · efl(y) ·

(
1 +

τ

H(x�
l , y)−H(x̄, y)

)
≤ λlim

l .

The formula for the prefactor pf0l (y) that appears in the above
constraint involves determinants of (the typically large) d× d
matrices,∇2

xxH(x, y) andXl(y), via (12) and (14) respectively.
The presence of these determinants can slow down computa-
tion of the rate constraints and their gradients, and may result
in ill-conditioning. Fortunately, (24) and (25) can be used to
circumvent these issues. The following proposition uses the
matrix-determinant lemma [50] to obtain a reformulation of the
prefactor that avoids large determinants.

Proposition 2: Fix a line l ∈ L′, and assume that x, x�
l ∈ Rd

and y ∈ Rm−d satisfy the conditions of Proposition 1. If x�
l and

μ�
l ≥ 0 satisfy (26)–(28), then the prefactor and energy factor in

(10) admit the following reformulation:

pf1l (y) = pf0l (y)
(
1 +

2τ

μ�
l αl

)
(31)

pf0l (y) =
(μ�

l )
3/2‖∇xΘl(x

�
l , y)‖2S√

2πτ (αl det(Wl) + βl)
(32)

efl(y) = exp

(
−μ�

l αl

2τ

)
, (33)

where Wl := I − μ�
lAl is a rl × rl matrix, Al is as in Proposi-

tion 1, and the scalars αl := (x�
l − x)�∇xΘl(x

�
l , y) and βl :=

(x�
l − x)� Ql(x

�
l , y) adj(Wl)Kl(x

�
l , y)Q

�
l (x

�
l , y) (x

�
l − x).

Proof: See [49, Appendix C] of the preprint. �

Unlike (12) and (14), (32) involves the determinant and
adjugate of the small rl × rl matrix Wl. This allows efficient
computation of the scalar βl, and hence, of the overall failure
rate and its gradient. Moreover, it avoids the ill-conditioning
that plagues the original constraint, and allows expressing it in
an algebraic optimization system.

E. Efficient Practical Implementation

We now highlight other key algorithmic enhancements that
are necessary to improve the practical performance of the FP-
ACOPF. First, since the absolute value of the failure rates λτ

l (y)
can be very small, we found it beneficial to implement the rate
constraint (22) in its log-form. Using (10), and (31)–(33), this is
equivalent to:

3

2
log(μ�

l ) + log
(‖∇xΘl(x

�
l , y)‖2S

)− 1

2
log (αl det(Wl) + βl)

+ log

(
1 +

2τ

μ�
l αl

)
− μ�

l αl

2τ
≤ log(

√
2πτλlim

l ).

(34)

All intermediate terms involved in the left-hand side of (34)
are computable in closed form, except for the matrix Al which
appears in the definition of Wl := I − μ�

lAl. A close examina-
tion of the formula forAl in Proposition 1 reveals that this matrix
can be efficiently constructed by first solving for the intermediate
matrix Zl ∈ Rd×rl as follows:

∇2
xxH(x, y) · Zl = Ql(x

�
l , y), (35)

and then setting Al = Kl(x
�
l , y)Q

�
l (x

�
l , y)Zl. We therefore

introduce explicit decision variables Zl, along with (35) as
constraints in the FP-ACOPF formulation. Notably, this allows
the complete rate constraint (34), including all of its intermediate
expressions, to be computed algebraically.

Implementing the rate constraint (22) for a particular line
l ∈ L′ thus involves introducing drl + d+ 1 additional vari-
ables, namelyZl ∈ Rd×rl ,x�

l ∈ Rd andμ�
l ≥ 0 anddrl + d+ 3

additional constraints, namely (26)–(28) and (34)–(35). In prac-
tice, the rate constraints (34) are binding for only a small frac-
tion of critical lines. Therefore, adding O(drl) constraints for
the remaining non-critical lines unnecessarily increases model
complexity. To limit this growth, we add additional variables
and constraints in an iterative manner, only for those lines
l ∈ L̂ whose rate constraints (34) are found to be violated. Our
algorithm can be described as follows.

Step 1: Set L̂ = ∅.
Step 2: Define decision variables x ∈ Rd, y ∈ Rm−d, and

{(x�
l , μ

�
l , Zl) ∈ Rd × R≥0 × Rd×rl} for each l ∈ L̂.

Compute an optimal solution ẑ of the problem:

minimize (17)

subject to (4), (5), (18)−(21),

(26)−(28), (34), (35) ∀l ∈ L̂.
Step 3: For all l ∈ L′ \ L̂ (possibly in parallel):

1) Use ẑ to compute candidate values of x�
l , μ

�
l , Zl

by solving (26)–(28), and (35).
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Fig. 1. Fig. 1(a) shows the relative log-error in approximating the true failure
rate λτl (y) by λ̃τl (y) in the rate-constrained model. Fig. 1(b) shows line capacity
utilization as a function of its failure rate. Each dot corresponds to a transmission
line and y is the classical (i.e., N − 0) ACOPF dispatch.

2) If inequality (34) is violated using ẑ and the com-
puted values of x�

l , μ
�
l , Zl, update L̂ = L̂ ∪ {l}

and save the computed values as warm-starts.
Step 4: If L̂ was updated, go to Step 2; else, stop and output

(x̂, ŷ) as the optimal FP-ACOPF solution.

IV. NUMERICAL SIMULATIONS

We now present results and insights obtained from several
experiments.5 The IEEE 118-bus test system with line limits
I liml obtained from PGLib [51], is used in all experiments
except Section IV-B where we also include larger networks.
We set branch and shunt conductances to zero to satisfy the
lossless assumption,6 remove transmission line taps for sim-
plicity, and set the system matrices J and S that appear in (2)
as per [43].7 The numerical performance of the FP-ACOPF is
largely unaffected by the choice of the noise parameter τ , the line
failure threshold Itripl , and the network loading (pd, qd) levels.
Therefore, Sections IV-A, IV-B, IV-C and IV-D use ‘baseline’
values of τ = 10−4, Itripl = 1.10 I liml and (pd, qd) values from
MATPOWER [52]. Their values can, however, strongly affect
cascading behavior; therefore, Section IV-E includes a discus-
sion of cascading sensitivity to their values.

A. Analysis of Line Failure Rates

For a fixed dispatch point y, the true line failure rates λτ
l (y) are

computed by solving problem (9) to obtain the most likely failure
point x�

l and its multiplier μ�
l . However, the FP-ACOPF com-

putes an estimate, which we denote as λ̃τ
l (y), by solving (26)–

(28) instead of (9). Fig. 1(a) shows the corresponding approxi-
mation error for the subset of lines with the highest failure rates.
We observe that the relative log-error in the approximation is

5Our Julia code is available at: https://github.com/jacob-roth/
OPFgithub.com/jacob-roth/OPF. All optimization problems were solved
using Ipopt with linear solver MA27 via JuMP. The runs were performed on 32
threads of an Intel Xeon Gold 6140 CPU at 2.30 GHz with 512 GB RAM.

6For some context on this assumption, the mean branch resistance/reactance
ratio is approximately 0.2. Also, the mean difference between the ACOPF
solutions computed with and without resistances is 0.004 p.u. and 0.04 for the
voltage magnitudes and angles, respectively.

7We set generator massesM = 0.0531, generator dampingDg = 0.05, load
damping Dl = 0.005 and perturbation parameter Dv = 0.01.

TABLE II
SUMMARY OF NUMERICAL PERFORMANCE FOR THE 118-BUS TEST CASE

less than 10−2. Fig. 1(b) shows that lines with higher utilization
of their flow capacity, defined as

√
Θl(x, y)/I

lim
l × 100%, do

not necessarily have higher failure rates, thus illustrating that
the magnitude of line flow is not an effective surrogate for
its failure rate. For example the line with the second-largest
capacity utilization has a negligible failure rate, whereas lines
with the largest failure rates have capacity utilization close to
60%. For accuracy, we must thus work directly with the failure
rates via (10).

B. Numerical and Economic Performance

Table II summarizes the computational time and generation
cost of the failure probability-constrained, the N − 0, and the
N − 1 security-constrained8 dispatch points for the 118-bus test
system. We observe that the FP-ACOPF solves within an order
of magnitude of the time it takes to solve the N − 0 ACOPF.
On the other hand, the N − 1 model is slower by more than
two orders of magnitude, although this may be because all
contingencies are included in a single optimization problem. In
terms of generation cost, including the rate constraints results in
a cost increase of less than 0.01% compared to theN − 0model,
even with extremely stringent rate limits, without requiring any
load shedding.

It is worth pointing out the higher cost of the N − 1 model
comes with a guarantee of N − 1 reliability. Based on a contin-
gency analysis of the FP-ACOPF dispatch points, we found that
they remained feasible in 184 (out of 186) line contingencies,
even though this was not explicitly imposed in their optimiza-
tion. Further analysis found that they could provide feasible
power flows under all contingencies, but failed only to satisfy
the thermal line limits (21) in the two infeasible contingencies.
In practice, operators may impose the failure rate constraints
in each contingency of the N − 1 ACOPF, thus ensuring both
N − 1 reliability and low failure probability.

Table III summarizes the computational times of the FP-
ACOPF for various PGLib test cases of increasing size. Due to
the distinct structures of these test networks, we impose failure
rate limits that are a factor of 10 and 100 smaller than the
maximum failure rate of theirN − 0ACOPF dispatch point. For
some of the cases, the imposed rate limits may be so stringent
that the corresponding FP-ACOPF formulation can become
infeasible. To recover a dispatch point in such cases, we first
add load shedding (slack) variables ps, qs ∈ Rnb to the power

8The set of contingencies is comprised of all lines, and post-contingency
generation is allowed to vary by at most 0.1pmax

g,k at each generator k ∈ G.

Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on November 24,2025 at 03:20:20 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/jacob-roth/OPF
https://github.com/jacob-roth/OPF


4690 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 37, NO. 6, NOVEMBER 2022

TABLE III
SUMMARY OF NUMERICAL PERFORMANCE ACROSS PGLIB TEST CASES

flow equations (4)–(5) as follows:

pnet,i +
∑
j∈N

BijViVj sin(θi − θj) = ps,i, i ∈ N ,

qnet,i −
∑
j∈N

BijViVj cos(θi − θj) = qs,i, i ∈ N ,

and then minimize them in the objective function (17) using a
large quadratic penalty (φ = 106) as follows:∑

k∈G
ck(pg,k) + φ

∑
i∈N

(
p2s,i + q2s,i

)
.

The column “Load shed” in Table III reports the absolute
values of these variables (as a fraction of the total system load).
The columns “NLP time” and “Eval time” report the total (wall-
clock) time spent in Steps 2 and 3 of the algorithm described at
the end of Section III, respectively.

We make the following observations from Table III. First,
when compared to the N − 0 ACOPF, the time spent to solve
the FP-ACOPF formulation increases roughly by a factor of 10
for both loose rate limits (across all cases) as well as tighter rate
limits (up to the 500-bus case). In contrast, for the tighter rate
limit in the 1354-bus case, the time increases from roughly 3 sec
to 560 sec. This increase can be explained by the observation
that for this particular case, Step 2 was invoked 3 times, each
solving a nonlinear problem with an increasing number of failure
rate constraints. Second, the time spent in Step 3 to screen
and evaluate violated failure rate constraints is an increasing
function of the number of network lines. Third, a nonzero (but
small ∼2%) amount of load must be shed in the 200-bus and
1354-bus cases to satisfy the imposed rate limits. However,
this phenomenon is also true in the N − 1 ACOPF where it is
common to allow constraint violations to ensure feasibility [53].
Finally, we note that the “NLP time” can be reduced using
decomposition techniques that are used to solve the N − 1
ACOPF [54], whereas the “Eval time” can be reduced using a
larger number of parallel computing processes. Indeed, although
not shown in the table, increasing the number of processes from
32 to 64 decreases the evaluation time in the largest case from
557 sec to roughly 370 sec.

C. Cascading Failure Simulations of Different Dispatch Points

To compare the cascade potentials of the failure probability-
constrained, the N − 0, and the N − 1 security-constrained
ACOPF, we perform 1000 cascading failure simulations per
dispatch point, using the Kinetic Monte Carlo (KMC) simulator

developed in [32]. In each simulation, the original network is
randomly perturbed with two initial line contingencies9.

For a given initial network state and dispatch point, KMC
simulates cascading sequences of line failures by using the
failure rate expression in (10) to identify the next likely line
failure. Besides the initial dispatch point, KMC assumes that
no operator interventions take place over the cascading time
horizon, which we set to be one hour based on the typical
time scale of operator actions [55], [56]. Moreover, it assumes
that after a failure occurs, the system ‘re-equilibriates’ to a
new static equilibrium (satisfying the power flow equations)
before the next failure occurs. That is, the system reaches a
post-failure state (without triggering any intervening failures)
in an amount of time that is small relative to the time until
the next failure. This assumption is implicit in the majority of
existing quasi-steady-state models [16] and numerical evidence
in support of this assumption can be found in [32].

Each post-failure state satisfies the power flow equations and
hence is a local minimizer (6) of the energy function, appro-
priately modified (via the admittance matrix) to account for
the degraded network topology. Following each line failure, the
slack bus is assumed to maintain power balance in the network,
and buses that no longer connect to the slack bus (under the
modified network topology) are disconnected, as well as buses
whose voltage magnitudes fall below 0.9 p.u. The cumulative
active demand pd at disconnected buses serves as a measure
of lost load. This enables fair comparison of different dispatch
points, on the basis of time and severity until full system collapse
or until the end of the cascading time horizon (one hour).

Fig. 2 shows the distributions of the number of failed lines
and the amount of load shed for each dispatch point, in the form
of survival functions, for baseline values of τ = 10−4, Itripl =
1.10 I liml and nominal MATPOWER (pd, qd). Their averages
and standard deviations are summarized in Table IV.

Fig. 2(a) shows the probability that the total number of line
failures is at least as large as a given value, as a proportion
of all 1000 simulations. Here, we observe that all survival
functions decrease as the number of line failures increases, and
this decrease accelerates when the number of failures is large, in-
dicating that the frequency of large blackouts decreases rapidly.
Moreover, unlike theN − 1model, the FP-ACOPF dispatch can

9Initial contingencies are sampled as follows: (i) choose the first contingency
uniformly at random from all available lines, (ii) sample a realization d from a
Zipf distribution with parameters s = 3 and N = 10, (iii) group all lines that
are topological distance d from the first initial contingency, and (iv) uniformly
sample the second contingency from this group.
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Fig. 2. Distribution of number of failed lines and load shed using the KMC simulator, considering all simulations.

TABLE IV
AVERAGE NUMBER OF FAILED LINES AND LOAD SHED (STANDARD DEVIATION

IN PARENTHESES) OVER ALL KMC SIMULATIONS

be tuned via the rate limits λlim, and for sufficiently stringent
λlim ∈ {10−12, 10−15}, it can reduce the average number of line
failures by more than 50% when compared to the N − 0 and
N − 1 models, as seen in Table IV.

Fig. 2(b) shows the distribution of load shed for each dispatch
point as a probability of the load shed being at least as large as
a given value, over all 1000 simulations. We find that the N − 1
security-constrained ACOPF performs as well as the FP-ACOPF
in reducing the probability of very large load shedding, which
is not surprising since the FP-ACOPF formulation explicitly
constrains the probability of only the first line failure. However,
unlike the former, the latter is also able to reduce the probability
of small-to-intermediate demand losses, leading to a more than
30% reduction in average load shed for λlim ∈ {10−12, 10−15}.

Fig. 3 shows the average time until a certain number of lines
have failed. We find that, by delaying the system’s first failure
time, the FP-ACOPF is able to successfully delay–and hence,
prevent–subsequent line failures which could lead to system
collapse. For example, in the first 15 minutes after the first
failure, FP-ACOPF with λlim = 10−15 shows about two times
fewer lines failures compared to the N − 1 dispatch.

D. Validation and Benchmarking of Cascade Statistics

The goal of this section is to validate the simulation statistics
from the previous section. We proceed to do this in three ways: 1)
qualitative comparisons with historical cascades, 2) quantitative
comparisons with an alternate AC-based cascade simulator that
is based on an entirely different methodology, and finally, 3)
validation of some of the key assumptions.

Fig. 3. Average timeline of line failures (averaged across simulations where
at least one failure occurred).

1) Historical Cascades: The number of line failures and load
shed in historical outage data are known to follow a heavy-tailed
or Zipf distribution [16], [56]. This pattern can also be seen in
Figs. 2(a) and (b); specifically, each survival function decreases
roughly linearly in these log-log plots, which is characteristic of
a power law distribution. Although this linear behavior is more
pronounced in Fig. 2(a), it is also evident for an intermediate
range of values in Fig. 2(b). In addition, the distinctive ‘knee’
in Fig. 2(a) has been observed in other cascading failure models
as well [16].

Historical cascades also show a distinctive acceleration dur-
ing their initial stages [56], [57]. This is somewhat evident in
Fig. 3 where the N − 1 and FP-ACOPF dispatch points with
λlim ∈ {10−12, 10−15} exhibit a rapid succession of failures in
the beginning but then appear to taper off.

We note that even though our simulations cannot be directly
compared to historical data (since they correspond to different
systems and initiating events), the above observations indi-
cate that the KMC cascading failure model captures important
patterns that are representative of historical outages. A more
thorough validation and comparison against real outage data
can be found in [32].
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Fig. 4. Distribution of number of failed lines and load shed using the AC-CFM simulator, considering all simulations.

2) Comparison With an Alternate Cascading Failure Simu-
lator: We now compare the cascade potentials of the various
dispatch points using AC-CFM, an existing AC-based quasi-
steady-state simulator developed in [57]. We perform 1000 sim-
ulations per dispatch point, where the original network (which
we adjusted to be lossless) is randomly perturbed with the same
two initial line contingencies as in Section IV-C. In contrast to
the KMC simulator, AC-CFM uses a set of deterministic rules to
model various protection mechanisms. In addition to line trips
(which we adjusted per (1) with Itripl = 1.10) and under-voltage
load shedding—mechanisms modeled by KMC—it also models
under-frequency load (and over-frequency generator) shedding,
and under- and over-excitation limiters.

Fig. 4(a) and (b) show the distribution of the number of failed
lines and total load shed for each dispatch point, respectively,
as now predicted by AC-CFM. For small values of the number
of failed lines in Fig. 4(a), the survival functions have a similar
shape but begin at different levels.

Examining the intercept of Fig. 4(a) shows that, relative to
N − 0, the dispatch points corresponding to FP-ACOPF with
λlim ∈ {10−12, 10−15} demonstrate a 15% and 8% reduction,
respectively, in the number of observed cascades with at least
one failure, compared to a 2% reduction demonstrated by N −
1. In addition, Fig. 4(a) indicates that the FP-ACOPF dispatch
points have lower failure probabilities for intermediate-to-large
numbers of failed lines. Though no full system failures were
observed, this pattern can also be found in Fig. 4(b) for load shed
greater than 1 p.u, indicating that the FP-ACOPF dispatch points
can also reduce the frequency of intermediate-to-large demand
losses at the expense of possibly inducing a higher proportion
of smaller losses.

Finally, Table V shows that across all simulations, the best
FP-ACOPF dispatch point reduced the average number of line
failures by more than 25% (and had lower variability) and
reduced the average amount of load lost by more than 10%,
compared to N − 0 ACOPF. In contrast, the N − 1 dispatch
point increased the number of failures by 10% (with larger
variability) and increased the amount of load lost by 8%.

Additional experiments across a range of AC-CFM parame-
ters, including which protection mechanisms are modeled along

TABLE V
AVERAGE NUMBER OF FAILED LINES AND LOAD SHED (STANDARD DEVIATION

IN PARENTHESES) OVER ALL AC-CFM SIMULATIONS

Fig. 5. Representative generator angular velocities (relative to system fre-
quency) following the outage of line 96 at time t = 1 second.

with their thresholds, point to the fact that it is difficult to
directly compare absolute estimates of failure probability with
the KMC simulator. This is not surprising since they are based
on different assumptions, and similar observations across a
large range of simulators have been made in [16]. Nevertheless,
we find it encouraging that the various dispatch points exhibit
similar patterns (in particular in terms of their relative ordering
with respect to cascade sizes) even when evaluated using a
cascading methodology, AC-CFM, that is different from our
KMC approach, and that FP-ACOPF can lead to lower failure
probabilities under certain conditions.

3) Validation of Assumptions via Transient Stability Anal-
ysis: The KMC and AC-CFM simulators are both based on
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Fig. 6. Distribution of number of failed lines and load shed for various values of line failure threshold I
trip
l

and system loads (pd, qd) using KMC.

quasi-steady-state methodologies. They implicitly assume not
only that the system stabilizes to a new static equilibrium (sat-
isfying the power flow equations), but also that this happens
in a time frame that is small relative to the time until the next
failure. However, these assumptions can fail because of system
dynamics that are not modeled in these simulators. For example,
generator desynchronization induced by an outage may cause
the system to become unstable or to stabilize to another state
than the one predicted by the simulators. To validate these
assumptions, we use an existing tool [58] to perform stability
analysis and verify: (i) whether the FP-ACOPF dispatch point is
a stable operating point; (ii) whether the settling time following
a failure (if the system remains stable) is relatively smaller than
the expected next failure time as predicted by (16); and (iii)
whether the new stable operating state is same as that predicted
by (6).

To that end, we consider the FP-ACOPF dispatch point
(λlim = 10−9) and simulate system dynamics (using classical
swing equations for generators and assuming constant active and
reactive power outputs at load buses) for multiple fault scenarios,
each corresponding to a line outage. We found that in roughly
89% of the (134 total) simulations, the system oscillations were
damped to stable values in 27.3 seconds on average (with a
maximum and standard deviation of 34.6 and 3.1 seconds,
respectively), whereas only 11% of simulations were reported as
being potentially unstable. Fig. 5 illustrates the typical response
of representative system variables following a line outage where
the system remained stable.

We also observed that, in all of the stable scenarios, the system
stabilized to the same equilibrium state as the one predicted by
(6) (appropriately modified to account for the failed line). On

the other hand, among the unstable scenarios where (6) also
converged to a solution, only roughly half of them turned out
to be dynamically unstable. These experiments indicate that
the aforementioned quasi-steady-state assumptions do hold for
the majority of line outages, although this is likely to be true
only up to a certain point where the system has not degraded
significantly. At the same time, they also highlight the challenges
and need to model system dynamics more accurately in the
context of cascading failures [18], [19].

E. Sensitivity Analysis

To study the sensitivity of our results to the choice of line fail-
ure threshold I trip

l and loads (pd, qd), we repeated our analysis by
varying them as follows: Itripl ∈ {1.05, 1.10, 1.12} × I liml and
(pd, qd) ∈ {1.0, 1.05} × nominal MATPOWER values, where
the lower I trip

l and higher (pd, qd) values were chosen so as to
stress the system towards larger failures, and the higher I trip

l

value was chosen to elicit the opposite effect. Fig. 6 summarizes
the KMC cascading failure simulations of the various dispatch
points under these settings.

First, we observe that the distribution of the number of failed
lines (Fig. 6(a)–(c)) for each dispatch point is an approximate
power law in the range L ∈ [1, 10], followed by a distinctive
‘knee’ similar to Fig. 2(a), indicating a significant decrease in
the probability of large line failures. The distribution of the
load shed (Fig. 6(d)–(f)) is also an approximate power law,
although for a smaller range of load shedding values. Second, we
observe that the FP-ACOPF generally outperforms the N − 0
and N − 1 ACOPF, both in terms of reduced probabilities of
large line failures as well as load shedding. Specifically, for
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higher load levels (Fig. 6(a) and (d)), we find that the FP-ACOPF
dispatches with λlim ∈ {10−12, 10−15} perform better than the
other dispatch points; for lower line failure thresholds (Fig. 6(b)
and (e)), the FP-ACOPF dispatches with λlim ∈ {10−9, 10−15}
perform significantly better, lowering failure probabilities by a
factor of three on average, compared to both N − 0 and N − 1;
and for higher line failure thresholds (Fig. 6(c) and (f)), the
FP-ACOPF dispatch points with λlim ∈ {10−12, 10−15} have
the lowest failure probabilities. In this setting, we note that the
survival functions of the N − 0 dispatch coincide precisely with
that of λlim = 10−9. In summary, we find that the improvement in
performance in regards to cascading risk of FP-ACOPF relative
to N − 0 and N − 1 ACOPF appears to hold for a range or
parameter choices beyond the ones derived from PGLib [51]
and MATPOWER [52] that we used for the assessments in the
preceding subsections.

V. CONCLUSION AND FUTURE WORK

This paper takes the first steps towards quantifying and proac-
tively reducing failure risk–and implicitly, cascading risk–in
operational dispatch. Our proposed FP-ACOPF generalizes the
standard ACOPF formulation by constraining the probability
of component failures due to automatic relay trips, via analytic
functions of the system state and stochastic load fluctuations
derived from our previous work [32]. By using techniques
from bilevel optimization and numerical linear algebra, we
reformulated the probability constraints entirely algebraically
allowing their solution using off-the-shelf nonlinear solvers.
We empirically showed that constraining failure probabilities–
which is equivalent to increasing the system’s expected first
failure time–is a safe approximation and effective surrogate
for constraining the probability of a cascading failure sequence
starting from any single component outage. Simulation outputs
from two different cascading failure simulators provide evidence
that FP-ACOPF can significantly outperform classical N − 0
and N − 1 security-constrained ACOPF models, in terms of re-
ducing the probability of line outages and load shedding, without
incurring significantly larger computational or economic costs.

We envision future work along several directions. From a
methodological viewpoint, we need to extend the failure proba-
bility model and the corresponding optimization model to lossy
networks. From a modeling viewpoint, more general multiple-
component failure rate constraints, as well as extensions that
combine classical N − 1 models with failure rate constraints
need to be investigated. From a practical viewpoint, the model
parameters (e.g., τ ) need to be calibrated and the model itself
needs to be further validated and compared against other estab-
lished cascading simulators on real network data. We believe
these extensions can open up several other use cases for our
method including long-term planning decisions, line capacity
allocations, and contingency screening.
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