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Superquantile

fr(r)

i
t = VaR,(R)

* Many names: CVaR (conditional value at risk) / AvVaR / :
Superqg uantile / expected shortfall (Ben-Tal & Teboulle, Rockafellar & Uryasev, Rockafellar & Royset...]
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* Many equivalent representations...
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Superquantile

1
l —a

CVaR,(R) := min, t + EplR — 1],

: | m 1
=min, 1 + — > — - [r;— 1], =max ey (q,7)

m . 1 m
Qk(a):: {QER Osqs_ﬂ Zl‘:qu':l}

o In SAA setting: T y(R) := Zi;l ;) where) k(a) = m - (1 — a) i.e., a divides m

() when o doesn’t divide m and k = |am |, we need to append (and appropriately weight) the (k + l)th largest term.
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e Example: minimize fy(x) + CVaR,(G(x, &))

xEXCR"

where G(x; &) = {g;(x; &)L,
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Superquantile optimization

minimize fo(x) + CVaR,(G(x, ¢))

xeXCR"

e (GGeneral problem:

minimize f;(x) + CVaR(G'(x, &Y))

xeXCR”"

subject to CVaR,(G/(x,&9)) <0, =1,...,L
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Superquantile optimization

Reduce # of function / (sub)gradient evaluations && obtain high precision
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Second order method
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minimize f,(x) + CVaR(G"(x, £))

xeXCR"

subject to CVaR(G’(x,&") <0,7=1,...,L
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minimize f,(x) + CVaR(G"(x, £))

xeXCR"

subject to CVaR(G’(x,&") <0,7=1,...,L

Existing methods

e |Linearize the "'max’:

f 4 — e izl-andzl-Zgi()c,fi)—t, z220,i=1,...,m

l —a =1 m

e Off-the-shelf second-order methods

 Numerical scaling in Newton system when constraints/scenarios switch

e How to avoid computation of derivative information of inactive g;

e Active set: need good heuristics to tune
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e Simplified problem: minimize c¢'x
xeR”

subject to CVaR;(Ax+ b)) <0
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Augmented Lagrangian Method

e Simplified problem: minimize c¢'x
xeR”

subject to CVaR;(Ax+ b)) <0

e Reformulate: minimize c¢'x
xeR”, yeR™

subjectto CVaRi(y) <0, y=Ax+b

o Partial AuglLag function: ¢'x+1"(y — Ax —b) + Iy — Ax - b||* with CVaR,(y) < 0
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T
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Augmented Lagrangian Method

T

 Simplified problem: m'xne”T\leze C X

subject to CVaR (Ax+b) <0

e Reformulate: minimize c¢'x

xeR", yeR™

subjectto CVaRy(y) <0, y=Ax+b
. Partial AugLag function: ¢ 'x + 1T(y — Ax — b) + ~lly — Ax - b||? with CVaR,(y) < 0

ALM Subproblem
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X
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Augmented Lagrangian Method

T

 Simplified problem: m'xne”T\leze C X

subject to CVaR (Ax+b) <0

e Reformulate: minimize c¢'x

xeR", yeR™

subjectto CVaRy(y) <0, y=Ax+b
. Partial AugLag function: ¢ 'x + 1T(y — Ax — b) + ~lly — Ax - b||? with CVaR,(y) < 0

ALM Subproblem

minimize c¢'x+ (1,y — Ax — b) + gHy — Ax — b||?
X,y

X

— (Ax+ b~ ilo) ||2
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ALM Subproblem

minimize {CD(X) — T x +
X

B (Ax+b_/1_/0)||2}




ALM Subproblem |z {

.
P(x) :==c'x+—

- (Ax+b— o)}

e Jailrisk set: B, :={re R":CVaRy(r) <0}

10 /
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(Ax + b — /1_/0) ||2}

e Jailrisk set: B, :={re R":CVaRy(r) <0}

e B, is polyhedral (very simple non-symmetric cone)
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ALM Subproblem |rinmize {ow:=cm

X

o (s =0}

e Jailrisk set: B, :={re R":CVaRy(r) <0}
e B, is polyhedral (very simple non-symmetric cone)
o dist(r, Bk)2 IS continuously differentiable
e projection is strongly semismooth
e Subproblem optimality condition:
Vo) =c+o-A"|(Ax+b— /o) =TIz (Ax+ b — Alo)| =0
can be solved by semismooth Newton method
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Tail risk (B,) projection: detail

e Given yO, calculate

.1
HBa(yO) — arg mmy;Hy — )’OH% Yoy TYo) T T Y am)) <0

e Sort!

.1 k
[Ty (> = argmin —[ly = y* 30y 29, 2 2, X% <0
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Tail risk (B,) projection: detail

e Given yO, calculate

.1
HBG()’O) — alg mmy;Hy — )’OH% Yy tYoyt o+ Yamp S0

e Sort!

0
sequivalent to _ﬁ

‘parametric LCP |

iwith tridiagonal |

" 00 0 000000 ® ® (Z-matrix O(m) _ |
HCVaRa(°)Sr(y) Yim YB1 V2 Y E

|-th largest
l —a
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Generalized Jacobian: detail

e Subproblem objective

Vo(x) =c+ 0°AT[<A)C + b — /f/a) — HBk(Ax + b — /T/G)]

VZp(x) 3 6-AT(I—J)A

minimize {gn(x) =c'x+—||
. ,

f10) |- (Ax+ b~ Tlo)|['}




Generalized Jacobian: detail

e Subproblem objective

minimize {qo(x) =c'x+
X

- PR

(Ax + b — /1_/0) ”2}

Vo(x) =c+ 6°AT[<A)C + b — /T/G) — HBk(Ax + b — /f/a)]

VZp(x) 3 6-AT(I—J)A

1T T
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Generalized Jacobian: detail

- e
minimize < @(x) :=c x+5|| ) ‘

X

e Subproblem objective

Vo(x) =c+ 6°AT[<A)C + b — /T/G) — HBk(Ax + b — /f/a)]

Vip(x)206-ATI—-J)A | L+ I /L LIy

1T T

A A 1
aCS
e Selects /.. U [_ samples and reweights A3, A7,
> = ok
I | Pty
;:1:::::::;
3N+
e e
O el e
D@ ¥
1oL S
A, A, §.< ...... .
.......................................... i e
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Generalized Jacobian: detail

p(Ax + b — Alo) | (Ax +b — ’1/0) ” }

L oy
minimize {qo(x) =C x+5||

X

e Subproblem objective

Vo(x) =c+ G'AT[<AX + b — /T/G) — HBk(Ax + b — f/a)]
VZp(x) 2 6-ATI—-J)A I+ 1 I 7L LI 3

. . s .
" e, PN
LI PR Y
. " .. . s .
.. - e
[ ] [ ]
[ ] [N

« Selects [, U I_ samples and reweights 43, A},

e Oftenhave |[LUI_| k< m | d

y .( ......
) o
Avs gl m i@t m
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Generalized Jacobian: detail

minimize {qo(x) =c'x+
X

e Subproblem objective

Vo(x) =c+ G°AT[<AX + b — /T/G) — HBk(Ax + b — /'lv/a)]
VZp(x) 2 6-ATI—-J)A I+ 1 I 7L LI 3

- PPN N - . s:ej-/
AT AT kl 'g;;;;z:i b
o Selects /I, U I_ samples and reweights 43, 45, st
DA R o F—— o | sl
e Oftenhave |[LUI_|~ k< m |

:
+ Compute AT(/ — /)4 = AT A with : U .

ATA € RU=FDX1 with | << m B S I m .... ; m
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Generalized Jacobian: detail

minimize {QD(X) =clx+ /o) _ (Ax + b — /1_/0) ”2}

X

e Subproblem objective

Vo(x) =c+ o - AT[(Ax + b — /f/a) — HBk(Ax + b — /T/G)]
VZp(x) 3 6-AT(I—J)A

» Selects I, U I_ samples and reweights
e Oftenhave |[L UL |~ k<m

e Compute A'(I —J)A = A" A with

ATA € R with || < m
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Generalized Jacobian: detail

minimize {gn(x) =c'x+ /o) _ (Ax + b — /1_/0) ”2}

X

e Subproblem objective

Vo(x) =c+ o - AT[(Ax + b — /f/a) — HBk(Ax + b — /T/G)]
VZp(x) 3 6-AT(I—J)A

o Selects I, U I_ samples and reweights e Gradient evaluation:

O(mlogm + mn
-Oftenhave|1>ul=\zk§m ( g )

e Compute A'(I —J)A = A" A with

ATA € RU=ADX with || < m
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Generalized Jacobian: detail

L - o
minimize {qo(x) =Cc' X+ —

X

(Ax iy /1_/0) ||2}

e Subproblem objective

Vo(x) =c+ o - AT[(Ax + b — /T/G) — HBk(Ax + b — f/a)]
VZp(x) 3 6-AT(I—J)A

o Selects I, U I_ samples and reweights e Gradient evaluation:

O(mlogm + mn
-Oftenhave|1>ul=\zk§m ( g )

o e Newtonb Id+so| e
e Compute A' (I —J)A = A" A with (W | [_ l: 1] ‘|‘V‘I + 1 )

ATA € REFDX with || < m “for free”
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Numerical experiments: synthetic instances

GRB® )quadratic objective

2
GRB(: Yinear ob jective

L=1 k=1%m

‘14
-7

i-O.S
-1

2|7 2|8 2'9 2|10 2I11 2'12 2l13

n
(3)

217
216

2'7 2'8 2|9 2'10 2l11 2'12 2'13

L=10k=1%m

-

13

-0.5

n

OSQP: linear objective

L=1 k=1%m

‘891

- 446

‘ | '--0.5
AL

2'7 28 29 210 211 212 213
n

L =10, k=1%m

'508
954
| | i--o.5
A

27 2'8 29 210 211 212 213
n

L=1 k=1%m

-

- 26

214 d '
-1

2|7 2'8 2|9 2|10 2'11 2I12 2'13
n

917
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915

g 914 _
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L =10, k=1%m

:

- 36

i‘-O.5
o7 98 99 ol0 oil ol2 olz L
n

3
OSQP(: )quadratic objective

L=1 k=1%m

' 772
386

T
il

27 28 29 2'10 2|11 2|12 213
n

2
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L =10, k=1%m -
B
s |

Ml

2'7 2'8 99 2'10 2'11 912 913
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(2),. ..
GRB: linear objective
L=1 k=1%m

L=10k=1%m

'26
i ] - 13
| | !
H :
. i-o.s _ '--0.5
2'9 2'10 2'11 9l2 9l3 -1 2'7 2'8 2'9 9l0 9ll 912 2'13 -1
n n

(3)
OSQP: linear objective

27 28

L=1k=1%m L=10,k=1%m
920 891 917 008
219 216
- 446 - 254
218 215
g Q17 0 g’ 914 0
216 213
015 | | --0.5 912 0.5
| H' | Hi
' 8 09 ol0 2 ol3 L 7 o8 o9 0 92 o131
27 98 99 9210 9oll 9ol2 9l 27 28 929 210 9oll 9ol2 Hk
n n

Numerical experiments: synthetic instances

L=1 k=1%m

GRB® )quadratic objective

L =10, k=1%m

.

26 - 36
-0 - ()
--0.5 912 --0.5
I I I [ [ [ 1 -]_ I [ 1 1 1 [ [ -1
27 28 29 210 211 212 213 27 28 29 210 211 212 213
n n
(3) : : :
OSQP: quadratic objective
L=1k=1%m L =10, k=1%m
772 17 362
216
- 386 - 181
215
0 g 2" 0
(i 2
1 2" 08
T I H' 2" |||Hi
| I | I I I I -]_ i I I J I I -1
27 28 29 210 211 212 213 27 28 29 210 211 212 213
n n

(2) GRB v11. Tolerance = 1e-8. Best of P-simplex, D-simplex, and Barrier.

) OSQP v0.6. Tolerance = 1e-3. Conducted with default linear solver. Vertical lines indicate OSQP timed out or failed to achieve tolerance.
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Numerical experiments: synthetic instances

G-OA: linear objective G-OA: quadratic objective
L=1 k=1%m L =10, k=1%m L=1k=1%m L =10, k=1%m
920 9 217. 27 920 8 10
219 216_ 219
-4.5 - 14 -4 i)
218 215_ 218
g QL7 0 E 914 N S QL7 0 0

216 213_ 216
915 -1 912 | HH‘ --2.D 915 -1, --1
214 -' 211 i -' 214 211

97 98 99 910 9ll 9l2 9I3 -2 97 98 99 910 9ll 9l2 9I3 -0 2'7 98 99 9l0 oll 2'12 913 2'7 2'8 2'9 9l0 oll 912 oI3 -2

n n n n
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Numerical experiments: synthetic instances

% Time: Ve |
lin. quad.

Problem KKT residual Time, : € = 1073 Timey, : € = 1076 Time. : € = 1078 % Time.: Sort ALM | SSN iter

¢ % Time.: Vv il

(m,n) lin. quad. lin. quad. lin. quad. lin. quad. lin. quad. ¢ lin. quad. lin. quad.

L=1k=1%m |

- (2%0,27) 3.3¢-9  1.4e-9 4.0e0  4.7¢0 1.0e1  8.8e0 2.6el  1.lel 42 16 100 ]
- (219,27) 6.7¢-9  2.0e-9 1.9¢0  1.9e0 7.3¢0  3.8e0 1.3el  4.4e0 34 14 19130 17|60 |
Po(218,27) 1.5e-10  2.6e-9 9.6e-1  1.1e0 2.5¢0  1.9e0 5.5e0  2.1e0 39 14 18190 16|50 ¢
L (2',2T)  2.3e9  9.7e9  4.5el 4T7el  14e0  8.7e1 1.6e0 ~90%el 22 10 ~ § 8 {15170 15150 §
(2928%) T 7.0e-9  1.2e-9  5.4e0  4.7e0 = 1.2el  7.6e0 1.7e1  89¢0 18 10 | . 18120 1570
(218,28) 6.3¢-9  9.9e-9 2.1e0  2.6e0 6.8¢0  4.1e0 9.8¢0  4.4e0 21 11 ¢ 19140 14|70
(217, 28) 4.6e-10  4.5e-9 1.4e0  1.1e0 2.8¢0  1.7e0 4.0e0  1.9e0 18 7 18 | 120 13| 60
(218, 29) 4.0e-10  9.0e-10 6.3¢0  6.0e0 1.5el  8.4e0 1.8e1  9.1e0 9 5 20 | 160 13 | 80
(217, 29) 9.3e-9  7.le-9 4.0e0  3.3e0 7.4e0  4.7e0 8.4e0  5.0e0 8 4 17 | 140 13| 90
(217, 210) 9.4e-9  1.1e-9 l.lel  9.1e0 2.1el  1.lel 2.3el  1.2el 3 2 16 | 170 13| 100
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Numerical experiments: synthetic instances

Problem KKT residual Time, : € = 1073 Timey, : € = 1076 Time. : € = 1078 % Time.: Sort ALM | SSN iter
(m,n) lin. quad. lin. quad. lin. quad. lin. quad. lin. quad. quad.
- (220,27) 7.5e-9  7.7e-9 7.3¢0  8.2e0 2.7e1  1.5el 2.7e1  1.8el 19 17
L (21,27) 3.5e-9  3.7e-9 4.7¢0  3.9e0 l.lel  6.9e0 1.3e1  8.4e0 20 17
- (218,27) 7.2e-9  2.4e-9 2.2¢0  2.2¢0 7.8¢0  4.0e0 8.1e0  4.5e0 16 17
(219,298) 1.7¢9 4.9e-9  1.0e1  1.lel  3.0el  1.7el  3.1el  1.8¢1 1
(218, 28) 2.7e-9  8.6e-9 6.3e0 5.5e0 1.3el 8.3e0 1.4el 8.9e0 14 13
(217, 28) 9.9¢-10 1.7e-9 3.0e0  2.5e0 7.7¢0  3.7€0 8.0e0  4.1e0 16 7
(218,29) 5.0e-9  1.9e-9 2.2¢el 1.5el 3.4el 2.1el 3.8el 2.2¢el 10 6
(217,29) 6.3e-9  1.8e-9 1.1el  8.3e0 1.7e1  1.lel 1.8¢1  1.lel 6 6
(217,210) 9.6e-9  6.8e-9 3.4el 2.0el 5.3el 2.6el 5.6el 2.7el 4 3
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Numerical experiments: synthetic instances

Problem KKT residual Time, : € = 1073 Timey, : € = 1076 Time. : € = 1078 % Time.: Sort ALM | SSN iter
(m,n) lin. quad. lin. quad. lin. quad. lin. quad. lin. quad. quad.

(229, 27) 7.5e-9  7.7e-9 7.3¢0 8.2 2.7e 1.5el 2.7e1  1.8el 19 17

(219,27) 3.5e-9  3.7e-9 4.7¢0  3.9e0 l.lel  6.9e0 1.3el1  8.4e0 20 17

(218,27) 7.2e-9  2.4e-9 2.2¢0  2.2e0 7.8¢0  4.0e0 8.1e0  4.5e0 16 17

(219, 2°) 1.7e-9  4.9e-9 1.0el 1.1el 3.0el 1.7el 3.1el 1.8el 13 11 ,'

(218,28) 2.7¢-9  8.6e-9 6.3e0 5.5e0 1.3el 8.3¢e0 1.4el 8.9e0 14 13

(217, 28) 9.9¢-10 1.7e-9 3.0e0  2.5e0 7.7¢0  3.7€0 8.0e0  4.1e0 16 7

(218,29) 5.5e-9  1.9e-9 2.2¢l 1.5el 3.4el 2.1el 3.8el 2.2el 10 6

(217,29) 6.3e-9  1.8e-9 l.lel  8.3e0 1.7e1  1.lel 1.8¢1  1.lel 6 6

(217, 210) 9.6e-9  6.8e-9 3.4el 2.0el 5.3el 2.6el 5.6el 2.7el 4 3

« When g:(x; &) is expensive and has “easy” second-order information,
ALM+SSN is expected to perform even better
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Application: risk-averse power grid dispatch
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Application: risk-averse dispatch

min f(x) + CVaR, (G(x;E5)) : g(x) <0,i=1,...,p

xeX

Gi(x;&) =minb y+-yTQy : Ay +b; = Cx,y > 0
y

e Consider V. as either DCOPF (convex) or ACOPF (nonconvex)
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Extension to weighted SAA



Extension to weighted SAA

 Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum
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Extension to weighted SAA

e Solve projection problem as a sequence of scalar proximal problems

dist(r”, B,)* = sup{¢(c) := ~SCVaR5(r")}

c>()
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Extension to weighted SAA

e Smooth the CVaR (inf-convolution):

C | m m
SCVaR(r) := mang(q, n—>-llqll; and 0F :={g€R™:0< g < fa, 2.4 =1}
qge,
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Extension to weighted SAA

e Smooth the CVaR (inf-convolution):

SCVaR((r) := max(q,r)—5-llqll3 and Q% : >
q€0; ¢

257
2.0

1.5¢

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
c &

Figure 1: Smooth CVaR ¢(c) := £C¢(r°) (left) and ¢’'(c) (right) versus ¢ for fixed a, p, r°.
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Extension to weighted SAA

Solve projection problem as a sequence of scalar proximal problems

dist(r*, B,)* = sup{¢(c) := ~SCVaR;(r") }

c>0

3.0t
2.5t
S
-
2.0t
1.5}
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
C C

Figure 1: Smooth CVaR ¢(c) := 1C¢(r°) (left) and ¢'(c) (right) versus c for fixed o, p, r°.
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Extension to weighted SAA

Solve projection problem as a sequence of scalar proximal problems

dist(r*, B,)* = sup{¢(c) := ~SCVaR;(r") }

c>0
* Interpret smooth CVaR as SCVaR:(r%) = —< min {%HC] _ crH%}+§HrH%
projection problem via its dual ‘ g€,
3.0} ®
§2.0-
012 0:4 O:6 O:8 1:0 012 Oi4 0:6 Oi8 1.10

Figure 1: Smooth CVaR ¢(c) := 1C¢(r°) (left) and ¢'(c) (right) versus c for fixed o, p, r°.
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Extension to weighted SAA

Solve projection problem as a sequence of scalar proximal problems

dist(r*, B,)* = sup{¢(c) := ~SCVaR;(r") }

e |nterpret smooth CVaR as SCVaR%(r0) = S RN TR A T
projection problem via its dual ) ¢ yeQ. { 2 lq H2} 2 17113

3.0¢F ‘C*

* Projection is pw-linear; again
consider using (scalar) SSNto s

solve for ¢* =50l

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
c c

Figure 1: Smooth CVaR ¢(c) := 1C¢(r°) (left) and ¢'(c) (right) versus c for fixed o, p, r°.
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Extension to weighted SAA

Solve projection problem as a sequence of scalar proximal problems

dist(r*, B,)* = sup{¢(c) := ~SCVaR;(r") }

c>0

e |nterpret smooth CVaR as SCVaR%(r0) = S RN TR A T
projection problem via its dual ) ¢ yeQ. { 2 lq H2} 2 17113

* Projection is pw-linear; again
consider using (scalar) SSNto s
solve for ¢* < 20}

e Each c-projection is a cts.

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
c c

quad. knapsack O(m)

Figure 1: Smooth CVaR ¢(c) := 1C¢(r°) (left) and ¢'(c) (right) versus c for fixed o, p, r°.
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Extension to weighted SAA

Solve projection problem as a sequence of scalar proximal problems

dist(r°, B,)? = sup{¢(c) := ~SCVaR;(r")}

c>0

e |nterpret smooth CVaR as SCVaR:(rV) = —L min {l||q — cr\|§}+£|\r\|§
¢ geQ, :
SSN + SSN (+ SSN) =
(in progress) s | = ad
¢ ACT -Proje Ol - - i 0.2 0.4 0.6 0.8 1.0 _1.'2- 0.2 0.4 0.6 0.8 1.0

quad. knapsack O(m

Figure 1: Smooth CVaR ¢(c) :== 2C5(r%) (left) and ¢’(c) (right) versus c for fixed a,p,°.
[Cominetti, Mascarenhas, and Silva: 2014 https://dx.doi.org/10.1007/s12532-014-0066-y | 22 /23



https://dx.doi.org/10.1007/s12532-014-0066-y

Questions?

Thank you!!



Appendix



Extension to weighted SAA

e Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum set

e Smooth the CVaR (inf-convolution):

SCVaR(r) := max(q r)—=llgl} and gpi= (g e R™: 0 < g <=t
qe

Z?il qdi = 1

e |nits “dual” form, it's just smoothing the max{ - ,0}

¢ - SCVaR‘(r) = max(q, r)——-llgll3 = min t+——(p, 2)+ < [|[r — 11 — 2], |3
qe0? z>0,1

e Forlarge ¢, SCVaR{(r) 1 CVaR,(r) doesn’'t have curvature
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| , 2 .
dist(r?, B,)? = 3||r” — projp_ (ro)H2 = min sllz =753 + 0B, (2)

: 1 02
minax slle —r7]|2 + A - CVaRq(z)

max min ||z — 7°||5 + A - CVaR,(z) (strong duality)

. 1 012 )\ - T
max min max ;f|z — iz +A-q =

.1 0|2 T :
max max min 5|z —7r|3+A-q¢ = (LP duality)

T,0 221,012 -
maX max Ag = 5 lq|l3 (eliminate x)

sup L max g7r0 — L gl (\i=1/c, 1°¢ Ba=A>0)
c>0 qEQa

= sup %Cfx (ro)

c>0

= sup v'r? — g3

vEcone @,

(vi=-c-q).

26 /23



Superquantile

fr(r)

i
t = VaR, (R)

e Coherent risk measure: convex, positive-homogeneous,
translation equivariant, i.e., CVaR (R — 7) = CVaR _(R) — 7)

e CVaR is polyhedral (value function of an LP): non smooth, multiple solutions

e Common reformulation (Rockafellar-Uryasev) linearizes max:

l —a =1 m
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