
with Ying Cui (UCB) 
Ignacio Aravena Solis and Cosmin Petra (LLNL)

Using Sparsity in Superquantile-
Constrained Optimization

Jake Roth

1

UMN ISyE 
ICCOPT July 24, 2025

/ 23

Outline
• Problem (uniform SAA)

• Superquantile

• Methodology 

• Application (weighted SAA)

• What changes

2

/ 23

Superquantile

3

/ 23

Superquantile

3

1 − α

t = VaR↵(R)

r

f R
(r
)

/ 23

Superquantile

3

1 − α

t = VaR↵(R)

r

f R
(r
)

/ 23

• Many names: CVaR (conditional value at risk) / AVaR / 
superquantile / expected shortfall [Ben-Tal & Teboulle, Rockafellar & Uryasev, Rockafellar & Royset…]

Superquantile

3

1 − α

t = VaR↵(R)

r

f R
(r
)

/ 23

• Many names: CVaR (conditional value at risk) / AVaR / 

• Many equivalent representations…

Superquantile

3

1 − α

t = VaR↵(R)

r

f R
(r
)

/ 23

• Many names: CVaR (conditional value at risk) / AVaR / 

• Many equivalent representations…

𝖢𝖵𝖺𝖱α(R) := mint t + 1
1 − α 𝖤P[R − t]+

Superquantile

3

1 − α

t = VaR↵(R)

r

f R
(r
)

/ 23

• Many names: CVaR (conditional value at risk) / AVaR / 

• Many equivalent representations…

𝖢𝖵𝖺𝖱α(R) := mint t + 1
1 − α 𝖤P[R − t]+

Superquantile

= mint t + 1
1 − α ∑m

i=1
1
m ⋅ [ri − t]+ = maxq∈Qk(α)

⟨q, r⟩

3

1 − α

t = VaR↵(R)

r

f R
(r
)

/ 23

• Many names: CVaR (conditional value at risk) / AVaR / 

• Many equivalent representations…

𝖢𝖵𝖺𝖱α(R) := mint t + 1
1 − α 𝖤P[R − t]+

Superquantile

= mint t + 1
1 − α ∑m

i=1
1
m ⋅ [ri − t]+ = maxq∈Qk(α)

⟨q, r⟩

Qk(α) := {q ∈ ℝm : 0 ≤ q ≤ 1
k , ∑m

i=1 qi = 1}

3

1 − α

t = VaR↵(R)

r

f R
(r
)

/ 23

• Many names: CVaR (conditional value at risk) / AVaR / 

• Many equivalent representations…

• In SAA setting: where(1) i.e., divides 𝖳(k)(R) := ∑k
i=1 r(i) k(α) = m ⋅ (1 − α) α m

𝖢𝖵𝖺𝖱α(R) := mint t + 1
1 − α 𝖤P[R − t]+

Superquantile

= mint t + 1
1 − α ∑m

i=1
1
m ⋅ [ri − t]+ = maxq∈Qk(α)

⟨q, r⟩

Qk(α) := {q ∈ ℝm : 0 ≤ q ≤ 1
k , ∑m

i=1 qi = 1}

3

1 − α

t = VaR↵(R)

r

f R
(r
)

(1) when doesn’t divide and , we need to append (and appropriately weight) the largest term.α m k = ⌊αm⌋ (k + 1)th

/ 23

Superquantile optimization

4

/ 23

• Example: 
 
 
where  G(x; ξ) = {gi(x; ξi)}m

i=1

Superquantile optimization

4

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱α(G(x, ξ))

/ 23

• Example: 
 
 
  G(x; ξ) = {gi(x; ξi)}m

i=1

• General problem:

Superquantile optimization

4

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱α(G(x, ξ))

/ 23

• Example: 
 
 
  G(x; ξ) = {gi(x; ξi)}m

i=1

• General problem:

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱α(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱α(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L

Superquantile optimization

4

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱α(G(x, ξ))

/ 23

Expectation vs superquantile

5

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi)

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi)

• Separable: all samples contribute
equally

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi)

• Separable: all samples contribute
equally

• Any sample gives estimate of
function’s value and (sub)gradient

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi) 𝖢𝖵𝖺𝖱k[g(x; ξ)] ≈ 1
k

∑k
i=1 g(x; ξ(i))

g(x; ξ(1)) ≥ g(x; ξ(2)) ≥ ⋯ ≥ g(x; ξ(m))

• Separable: all samples contribute
equally

• Any sample gives estimate of
function’s value and (sub)gradient

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi) 𝖢𝖵𝖺𝖱k[g(x; ξ)] ≈ 1
k

∑k
i=1 g(x; ξ(i))

g(x; ξ(1)) ≥ g(x; ξ(2)) ≥ ⋯ ≥ g(x; ξ(m))

• Separable: all samples contribute
equally

• Any sample gives estimate of
function’s value and (sub)gradient

• Non-separable: only tail samples
contribute

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi) 𝖢𝖵𝖺𝖱k[g(x; ξ)] ≈ 1
k

∑k
i=1 g(x; ξ(i))

g(x; ξ(1)) ≥ g(x; ξ(2)) ≥ ⋯ ≥ g(x; ξ(m))

• Separable: all samples contribute
equally

• Any sample gives estimate of
function’s value and (sub)gradient

• Non-separable: only tail samples
contribute

• Only samples in tail ()
give nontrivial (sub)gradient

g(x; ξk′￼
) k′￼ ≥ k

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi) 𝖢𝖵𝖺𝖱k[g(x; ξ)] ≈ 1
k

∑k
i=1 g(x; ξ(i))

g(x; ξ(1)) ≥ g(x; ξ(2)) ≥ ⋯ ≥ g(x; ξ(m))

• Separable: all samples contribute
equally

• Any sample gives estimate of
function’s value and (sub)gradient

• Non-separable: only tail samples
contribute

• Only samples in tail ()
give nontrivial (sub)gradient

g(x; ξk′￼
) k′￼ ≥ k

• Function evaluation may be costly!

/ 23

Expectation vs superquantile

5

𝔼[g(x; ξ)] ≈ 1
m ∑m

i=1 g(x; ξi) 𝖢𝖵𝖺𝖱k[g(x; ξ)] ≈ 1
k

∑k
i=1 g(x; ξ(i))

g(x; ξ(1)) ≥ g(x; ξ(2)) ≥ ⋯ ≥ g(x; ξ(m))

1 − α

t = VaR↵(R)

r

f R
(r
)

• Separable: all samples contribute
equally

• Any sample gives estimate of
function’s value and (sub)gradient

• Non-separable: only tail samples
contribute

• Only samples in tail ()
give nontrivial (sub)gradient

g(x; ξk′￼
) k′￼ ≥ k

• Function evaluation may be costly!

/ 23

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Second order method

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Second order method

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Second order method

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Second order method

Expensive to evaluate “Hessian” and solve linear system (with many scenarios)

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Second order method

Expensive to evaluate “Hessian” and solve linear system (with many scenarios)

Superquantile optimization

6

/ 23

Reduce # of function / (sub)gradient evaluations && obtain high precision

Second order method

Expensive to evaluate “Hessian” and solve linear system (with many scenarios)

Superquantile optimization

6

1 − α

t = VaR↵(R)

r

f R
(r
)

“Hessian” is sparseonly tail scenarios matter!

/ 23

Existing methods

7

/ 23

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L

/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L

/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L

/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

• Numerical scaling in Newton system when constraints/scenarios switch

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L

/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

• Numerical scaling in Newton system when constraints/scenarios switch

• How to avoid computation of derivative information of inactive gi

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L

/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

• Numerical scaling in Newton system when constraints/scenarios switch

• How to avoid computation of derivative information of inactive gi

• Active set: need good heuristics to tune

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L

/ 23

Augmented Lagrangian Method

8

/ 23

• Simplified problem: 
 
 

Augmented Lagrangian Method

8

/ 23

• Simplified problem: 
 
 

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

/ 23

• Simplified problem: 
 
 

• Reformulate: 
 
 

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

/ 23

• Simplified problem: 
 
 

• Reformulate: 
 
 

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

/ 23

• Simplified problem: 
 
 

• Reformulate: 
 
 

• Partial AugLag function: with c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function: with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function: with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x, y

c⊤x + ⟨λ̃, y − Ax − b⟩ +
σ
2

∥y − Ax − b∥2

/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function: with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x, y

c⊤x + ⟨λ̃, y − Ax − b⟩ +
σ
2

∥y − Ax − b∥2

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x

c⊤x +
σ
2

Π𝖢𝖵𝖺𝖱k(⋅)≤0(Ax + b − λ̃/σ) − (Ax + b − λ̃/σ) 2eliminate y

/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function: with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x, y

c⊤x + ⟨λ̃, y − Ax − b⟩ +
σ
2

∥y − Ax − b∥2

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x

c⊤x +
σ
2

Π𝖢𝖵𝖺𝖱k(⋅)≤0(Ax + b − λ̃/σ) − (Ax + b − λ̃/σ) 2eliminate y

/ 23

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Tail risk set: Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Tail risk set: Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

• is polyhedral (very simple non-symmetric cone)Bk

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Tail risk set: Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

• is polyhedral (very simple non-symmetric cone)Bk

• is continuously differentiable𝖽𝗂𝗌𝗍(r, Bk)2

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Tail risk set: Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

• is polyhedral (very simple non-symmetric cone)Bk

• is continuously differentiable𝖽𝗂𝗌𝗍(r, Bk)2

• projection is strongly semismooth

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Tail risk set: Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

• is polyhedral (very simple non-symmetric cone)Bk

• is continuously differentiable𝖽𝗂𝗌𝗍(r, Bk)2

• projection is strongly semismooth

• Subproblem optimality condition: 
 
 
 
can be solved by semismooth Newton method

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)] = 0

/ 23

Tail risk () projection: detailBk

11

/ 23

• Given , calculate  
 

y0

ΠBα
(y0) = 𝖺𝗋𝗀 𝗆𝗂𝗇y

1
2 ∥y − y0∥2

2 : y(1) + y(2) + ⋯ + y(⌊αm⌋) ≤ 0

Tail risk () projection: detailBk

11

/ 23

• Given , calculate  
 

y0

ΠBα
(y0) = 𝖺𝗋𝗀 𝗆𝗂𝗇y

1
2 ∥y − y0∥2

2 : y(1) + y(2) + ⋯ + y(⌊αm⌋) ≤ 0

• Sort! 
 
ΠBα

(y0,↓) = 𝖺𝗋𝗀 𝗆𝗂𝗇y
1
2 ∥y − y0,↓∥2

2 : y1 ≥ y2 ≥ ⋯ ≥ ym, ∑k
i=1 yi ≤ 0

Tail risk () projection: detailBk

11

/ 23

• Given , calculate  
 

y0

ΠBα
(y0) = 𝖺𝗋𝗀 𝗆𝗂𝗇y

1
2 ∥y − y0∥2

2 : y(1) + y(2) + ⋯ + y(⌊αm⌋) ≤ 0

• Sort! 
 
ΠBα

(y0,↓) = 𝖺𝗋𝗀 𝗆𝗂𝗇y
1
2 ∥y − y0,↓∥2

2 : y1 ≥ y2 ≥ ⋯ ≥ ym, ∑k
i=1 yi ≤ 0

Tail risk () projection: detailBk

11

isotonic + one budget constraint

/ 23

• Given , calculate  
 

y0

ΠBα
(y0) = 𝖺𝗋𝗀 𝗆𝗂𝗇y

1
2 ∥y − y0∥2

2 : y(1) + y(2) + ⋯ + y(⌊αm⌋) ≤ 0

• Sort! 
 
ΠBα

(y0,↓) = 𝖺𝗋𝗀 𝗆𝗂𝗇y
1
2 ∥y − y0,↓∥2

2 : y1 ≥ y2 ≥ ⋯ ≥ ym, ∑k
i=1 yi ≤ 0

Tail risk () projection: detailBk

11

isotonic + one budget constraint

equivalent to
parametric LCP
with tridiagonal
Z-matrix O(m)

/ 23

Generalized Jacobian: detail

12

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

12

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

12

I> + I= I< I> I= I<

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

12

I> + I= I< I> I= I<

• Selects samples and reweightsI> ∪ I=

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

12

I> + I= I< I> I= I<

• Selects samples and reweightsI> ∪ I=

• Often have | I> ∪ I= | ≈ k ≤ m

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

12

I> + I= I< I> I= I<

• Selects samples and reweightsI> ∪ I=

• Often have | I> ∪ I= | ≈ k ≤ m

• Compute with  
 

 with

A⊤(I − J)A = Ã⊤Ã

Ã⊤Ã ∈ ℝ(I=+1)×n | I= | ≪ m

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

13

• Selects samples and reweights

• Often have

• Compute with  
 

 with

I> ∪ I=

| I> ∪ I= | ≈ k ≤ m

A⊤(I − J)A = Ã⊤Ã

Ã⊤Ã ∈ ℝ(I=+1)×n | I= | ≪ m

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

13

• Selects samples and reweights

• Often have

• Compute with  
 

 with

I> ∪ I=

| I> ∪ I= | ≈ k ≤ m

A⊤(I − J)A = Ã⊤Ã

Ã⊤Ã ∈ ℝ(I=+1)×n | I= | ≪ m

• Gradient evaluation:
O(m log m + mn)

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

• Subproblem objective 
 

 ∇φ(x) = c + σ ⋅ A⊤[(Ax + b − λ̃/σ) − ΠBk
(Ax + b − λ̃/σ)]

∇̂2φ(x) ∋ σ ⋅ A⊤(I − J)A

Generalized Jacobian: detail

13

• Selects samples and reweights

• Often have

• Compute with  
 

 with

I> ∪ I=

| I> ∪ I= | ≈ k ≤ m

A⊤(I − J)A = Ã⊤Ã

Ã⊤Ã ∈ ℝ(I=+1)×n | I= | ≪ m

• Gradient evaluation:
O(m log m + mn)

• Newton build+solve: 
 

“for free”
O(n ⋅ | I= + 1 |2 + | I= + 1 |3)

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}

/ 23

Numerical experiments: synthetic instances

14

(2) (2)

(3) (3)

/ 23

Numerical experiments: synthetic instances

14

(2) GRB v11. Tolerance = 1e-8. Best of P-simplex, D-simplex, and Barrier. 
(3) OSQP v0.6. Tolerance = 1e-3. Conducted with default linear solver. Vertical lines indicate OSQP timed out or failed to achieve tolerance.

(2) (2)

(3) (3)

/ 23

Numerical experiments: synthetic instances

15

/ 2316

Numerical experiments: synthetic instances

/ 2317

Numerical experiments: synthetic instances

/ 2317

• When is expensive and has “easy” second-order information,
ALM+SSN is expected to perform even better

gi(x; ξ)

Numerical experiments: synthetic instances

/ 23

Application: risk-averse power grid dispatch

https://en.wikipedia.org/wiki/Electrical_grid

https://www.energy.ca.gov/programs-and-topics/topics/california-transmission-system/transmission-challenge
18

/ 23

Application: risk-averse power grid dispatch

https://www.energy.ca.gov/programs-and-topics/topics/california-transmission-system/transmission-challenge
19

https://en.wikipedia.org/wiki/Electrical_grid

ξi

/ 23

Application: risk-averse power grid dispatch

https://www.energy.ca.gov/programs-and-topics/topics/california-transmission-system/transmission-challenge
19

https://en.wikipedia.org/wiki/Electrical_grid

ξi
pi

/ 23

 
 
 
 
 
 
 

• Consider as either DCOPF (convex) or ACOPF (nonconvex)Vi

Application: risk-averse dispatch

min
x∈X

f(x) + 𝖢𝖵𝖺𝖱α(G(x; Ξ)) : gi(x) ≤ 0, i = 1,…, p

20

Gi(x; ξi) = min
y

b⊤y+ 1
2 y⊤Qy : Aiy + bi = Cix, y ≥ 0

/ 23

Extension to weighted SAA

21

/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum

/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍

 𝖲𝖢𝖵𝖺𝖱

• Smooth the CVaR (inf-convolution): 
 

 and 𝖲𝖢𝖵𝖺𝖱c
α(r) := max

q∈Qp
α

⟨q, r⟩− 1
2c ∥q∥2

2 Qp
α := {q ∈ ℝm : 0 ≤ q ≤ p

1 − α , ∑m
i=1 qi = 1}

/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍

 𝖲𝖢𝖵𝖺𝖱

• Smooth the CVaR (inf-convolution): 
 

 and 𝖲𝖢𝖵𝖺𝖱c
α(r) := max

q∈Qp
α

⟨q, r⟩− 1
2c ∥q∥2

2 Qp
α := {q ∈ ℝm : 0 ≤ q ≤ p

1 − α , ∑m
i=1 qi = 1}

/ 23

Extension to weighted SAA

22

/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as
projection problem via its dual

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2

/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as
projection problem via its dual

• Projection is pw-linear; again
consider using (scalar) SSN to
solve for c*

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2

/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as
projection problem via its dual

• Projection is pw-linear; again
consider using (scalar) SSN to
solve for c*

• Each -projection is a cts.
quad. knapsack

c
O(m)

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2

/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as
projection problem via its dual

• Projection is pw-linear; again
consider using (scalar) SSN to
solve for c*

• Each -projection is a cts.
quad. knapsack

c
O(m)

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2

SSN + SSN (+ SSN) 
(in progress)

[Cominetti, Mascarenhas, and Silva: 2014 https://dx.doi.org/10.1007/s12532-014-0066-y]

https://dx.doi.org/10.1007/s12532-014-0066-y

/ 23

Questions?

23

Thank you!!

/ 23

Appendix

24

/ 23

Extension to weighted SAA

25

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum set

• Smooth the CVaR (inf-convolution): 
 

 and

• In its “dual” form, it’s just smoothing the  
 
 

• For large , doesn’t have curvature

𝖲𝖢𝖵𝖺𝖱c
α(r) := max

q∈Qp
α

⟨q, r⟩− 1
2c ∥q∥2

2 Qp
α := {q ∈ ℝm : 0 ≤ q ≤ p

1 − α , ∑m
i=1 qi = 1

max{ ⋅ ,0}

c 𝖲𝖢𝖵𝖺𝖱c
α(r) ↑ 𝖢𝖵𝖺𝖱α(r)

c ⋅ 𝖲𝖢𝖵𝖺𝖱c(r) = max
q∈Qp

α

⟨q, r⟩− 1
2c ∥q∥2

2 = min
z≥0,t

t+ 1
1 − α ⟨p, z⟩+ c

2 ∥[r − t1 − z]+∥2
2

/ 2326

/ 23

• Coherent risk measure: convex, positive-homogeneous, 
translation equivariant, i.e.,

• CVaR is polyhedral (value function of an LP): non smooth, multiple solutions

• Common reformulation (Rockafellar-Uryasev) linearizes max: 
 

 with

𝖢𝖵𝖺𝖱α(R − τ) = 𝖢𝖵𝖺𝖱α(R) − τ)

t + 1
1 − α ∑m

i=1
1
m zi zi ≥ Ri − t, zi ≥ 0, i = 1,…, m

Superquantile

27

1 − α

t = VaR↵(R)

r

f R
(r
)

