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• Many names: CVaR (conditional value at risk) / AVaR / 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(1) when  doesn’t divide  and , we need to append (and appropriately weight) the  largest term.α m k = ⌊αm⌋ (k + 1)th
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• Example: 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Reduce # of function / (sub)gradient evaluations && obtain high precision

Second order method

Expensive to evaluate “Hessian” and solve linear system (with many scenarios)
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“Hessian” is sparseonly tail scenarios matter!



/ 23

Existing methods

7



/ 23

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L



/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L



/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L



/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

• Numerical scaling in Newton system when constraints/scenarios switch

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L



/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

• Numerical scaling in Newton system when constraints/scenarios switch

• How to avoid computation of derivative information of inactive gi

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L



/ 23

• Linearize the “max”: 
 

 and t + 1
1 − α ∑m

i=1
1
m zi zi ≥ gi(x, ξi) − t, zi ≥ 0, i = 1,…, m

• Off-the-shelf second-order methods

• Numerical scaling in Newton system when constraints/scenarios switch

• How to avoid computation of derivative information of inactive gi

• Active set: need good heuristics to tune

Existing methods

7

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ X ⊆ ℝn

f0(x) + 𝖢𝖵𝖺𝖱k(G0(x, ξ0))

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Gℓ(x, ξℓ)) ≤ 0, ℓ = 1,…, L



/ 23

Augmented Lagrangian Method

8



/ 23

• Simplified problem: 
 
 

Augmented Lagrangian Method

8



/ 23

• Simplified problem: 
 
 

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi



/ 23

• Simplified problem: 
 
 

• Reformulate: 
 
 

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi



/ 23

• Simplified problem: 
 
 

• Reformulate: 
 
 

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b



/ 23

• Simplified problem: 
 
 

• Reformulate: 
 
 

• Partial AugLag function:  with c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

8

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0
“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b



/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function:  with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b



/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function:  with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x, y

c⊤x + ⟨λ̃, y − Ax − b⟩ +
σ
2

∥y − Ax − b∥2



/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function:  with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x, y

c⊤x + ⟨λ̃, y − Ax − b⟩ +
σ
2

∥y − Ax − b∥2

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x

c⊤x +
σ
2

Π𝖢𝖵𝖺𝖱k(⋅)≤0(Ax + b − λ̃/σ) − (Ax + b − λ̃/σ) 2eliminate y



/ 23

• Simplified problem: 
 

• Reformulate: 
 

• Partial AugLag function:  with  
 
ALM Subproblem

c⊤x + λ⊤(y − Ax − b) + σ
2 ∥y − Ax − b∥2 𝖢𝖵𝖺𝖱k(y) ≤ 0

Augmented Lagrangian Method

9

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(Ax + b) ≤ 0

“row” := “scenario” 
gi(x; ξ) := a⊤

i x + bi

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x ∈ ℝn, y ∈ ℝm

c⊤x

𝗌𝗎𝖻𝗃𝖾𝖼𝗍 𝗍𝗈 𝖢𝖵𝖺𝖱k(y) ≤ 0, y = Ax + b

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x, y

c⊤x + ⟨λ̃, y − Ax − b⟩ +
σ
2

∥y − Ax − b∥2

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x

c⊤x +
σ
2

Π𝖢𝖵𝖺𝖱k(⋅)≤0(Ax + b − λ̃/σ) − (Ax + b − λ̃/σ) 2eliminate y



/ 23

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}



/ 23

• Tail risk set:  Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}



/ 23

• Tail risk set:  Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

•  is polyhedral (very simple non-symmetric cone)Bk

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}



/ 23

• Tail risk set:  Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

•  is polyhedral (very simple non-symmetric cone)Bk

•  is continuously differentiable𝖽𝗂𝗌𝗍(r, Bk)2

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}



/ 23

• Tail risk set:  Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}

•  is polyhedral (very simple non-symmetric cone)Bk

•  is continuously differentiable𝖽𝗂𝗌𝗍(r, Bk)2

• projection is strongly semismooth

ALM Subproblem

10

𝗆𝗂𝗇𝗂𝗆𝗂𝗓𝖾
x {φ(x) := c⊤x +

σ
2

ΠBk
(Ax + b − λ̃/σ) − (Ax + b − λ̄/σ) 2}



/ 23

• Tail risk set:  Bk := {r ∈ ℝm : 𝖢𝖵𝖺𝖱k(r) ≤ 0}
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•  is continuously differentiable𝖽𝗂𝗌𝗍(r, Bk)2

• projection is strongly semismooth

• Subproblem optimality condition: 
 
 
 
can be solved by semismooth Newton method
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parametric LCP 
with tridiagonal 
Z-matrix O(m)
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A⊤(I − J)A = Ã⊤Ã

Ã⊤Ã ∈ ℝ(I=+1)×n | I= | ≪ m

• Gradient evaluation:
O(m log m + mn)

• Newton build+solve: 
 

“for free”
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Numerical experiments: synthetic instances

14

(2) GRB v11. Tolerance = 1e-8. Best of P-simplex, D-simplex, and Barrier. 
(3) OSQP v0.6. Tolerance = 1e-3. Conducted with default linear solver. Vertical lines indicate OSQP timed out or failed to achieve tolerance.

(2) (2)

(3) (3)
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• When  is expensive and has “easy” second-order information, 
ALM+SSN is expected to perform even better

gi(x; ξ)

Numerical experiments: synthetic instances
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• Consider  as either DCOPF (convex) or ACOPF (nonconvex)Vi

Application: risk-averse dispatch

min
x∈X

f(x) + 𝖢𝖵𝖺𝖱α(G(x; Ξ)) : gi(x) ≤ 0, i = 1,…, p

20

Gi(x; ξi) = min
y

b⊤y+ 1
2 y⊤Qy : Aiy + bi = Cix, y ≥ 0



/ 23

Extension to weighted SAA

21



/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum



/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}



/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍  


 

 𝖲𝖢𝖵𝖺𝖱


• Smooth the CVaR (inf-convolution): 
 

  and 𝖲𝖢𝖵𝖺𝖱c
α(r) := max

q∈Qp
α

⟨q, r⟩− 1
2c ∥q∥2

2 Qp
α := {q ∈ ℝm : 0 ≤ q ≤ p

1 − α , ∑m
i=1 qi = 1}



/ 23

Extension to weighted SAA

21

• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍  


 

 𝖲𝖢𝖵𝖺𝖱


• Smooth the CVaR (inf-convolution): 
 

  and 𝖲𝖢𝖵𝖺𝖱c
α(r) := max

q∈Qp
α

⟨q, r⟩− 1
2c ∥q∥2

2 Qp
α := {q ∈ ℝm : 0 ≤ q ≤ p

1 − α , ∑m
i=1 qi = 1}



/ 23

Extension to weighted SAA

22



/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}



/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as 
projection problem via its dual

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2



/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as 
projection problem via its dual

• Projection is pw-linear; again 
consider using (scalar) SSN to  
solve for c*

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2



/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as 
projection problem via its dual

• Projection is pw-linear; again 
consider using (scalar) SSN to  
solve for c*

• Each -projection is a cts.  
quad. knapsack  

c
O(m)

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2



/ 23

Extension to weighted SAA

22

• Solve projection problem as a sequence of scalar proximal problems 
 
𝖽𝗂𝗌𝗍(r0, Bα)2 = sup

c>0
{ϕ(c) := 1

c 𝖲𝖢𝖵𝖺𝖱c
α(r0)}

• Interpret smooth CVaR as 
projection problem via its dual

• Projection is pw-linear; again 
consider using (scalar) SSN to  
solve for c*

• Each -projection is a cts.  
quad. knapsack  

c
O(m)

𝖲𝖢𝖵𝖺𝖱c
α(r0) = − 1

c min
q∈Qα

{ 1
2 ∥q − cr∥2

2}+ c
2 ∥r∥2

2

SSN + SSN (+ SSN) 
(in progress)

[Cominetti, Mascarenhas, and Silva: 2014 https://dx.doi.org/10.1007/s12532-014-0066-y]

https://dx.doi.org/10.1007/s12532-014-0066-y
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Thank you!!
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Extension to weighted SAA
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• Nonuniform scenario probabilities: destroys isotonic/Z- structure of top-k-sum set


• Smooth the CVaR (inf-convolution): 
 

  and  


• In its “dual” form, it’s just smoothing the  
 
 

• For large ,  doesn’t have curvature

𝖲𝖢𝖵𝖺𝖱c
α(r) := max

q∈Qp
α

⟨q, r⟩− 1
2c ∥q∥2

2 Qp
α := {q ∈ ℝm : 0 ≤ q ≤ p

1 − α , ∑m
i=1 qi = 1

max{ ⋅ ,0}

c 𝖲𝖢𝖵𝖺𝖱c
α(r) ↑ 𝖢𝖵𝖺𝖱α(r)

c ⋅ 𝖲𝖢𝖵𝖺𝖱c(r) = max
q∈Qp

α

⟨q, r⟩− 1
2c ∥q∥2

2 = min
z≥0,t

t+ 1
1 − α ⟨p, z⟩+ c

2 ∥[r − t1 − z]+∥2
2
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• Coherent risk measure: convex, positive-homogeneous, 
translation equivariant, i.e., 


• CVaR is polyhedral (value function of an LP): non smooth, multiple solutions


• Common reformulation (Rockafellar-Uryasev) linearizes max: 
 

  with  

𝖢𝖵𝖺𝖱α(R − τ) = 𝖢𝖵𝖺𝖱α(R) − τ)

t + 1
1 − α ∑m

i=1
1
m zi zi ≥ Ri − t, zi ≥ 0, i = 1,…, m

Superquantile

27

1 − α

t = VaR↵(R)

r

f R
(r
)


