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Every time we touch, Maggie Reilly, 1992
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Static Problems
o Optimal Power Flow (OPF)
@ “XYZ"-constrained OPF

@ “XYZ"-constrained OPF across time

Dynamic Problems
@ State estimation: generate inputs for operational tools

@ Dynamic response to “contingencies”

Our Problem

o Goal: Design a static operating point with “good” dynamics properties

@ Metric: Line failure probability

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019
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Introduction ~ Power Grid Overview

Notation and Basics

Variables for Static and Dynamic Analysis

Represent voltage v(*) and current i) by sinusoidals
e Convert time-domain to phasor: x(!) = Acos(wt + §) = R{Ae' ?e'“'} = R{Xe'“t}

Algebraic phasor manipulations (i.e., Ohm, Kirchoff, etc.) depend on a common w
and a reference §

Standard to use (w- and d-relative) voltage variables: 7 := Ve'? (1)

Compute scalar (rms) power values for the real and complex components of v and i
v
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Our network N' = {V, £} will contain:
@ Buses (vertices, V = Vs UV, U Vs): generator (PV), load (PQ), or slack (P8)
o Lines (edges, £): transfer power/current between bus i and j
o Admittance matrix (Laplacian): ¥ = G +iB
o Net active and reactive demand Py, = P} — Pé', and Qi == Q} — Qé' Y busieV

and will transfer power according to the AC power flow equations which compute:

S=P+iQ=v0O[YV]", partitioned as F(V,0) =P, G(V,0)=Q 2

v

Y1+ Y12 + Y13 —Y12 —Y13 (W|k|ped|a)
Y= ~Y12 Y2+ Y2 + Y —Y23
—Yi3 ~Y23 Y3 + Y13 + yo3
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Deterministic Model

Bridge Static to Dynamic

We partition the set of P, Q, V, 0 at each bus into dynamics variables x and static
parameters y
@ Start dynamics at an “equilibrium” point X defined implicitly via ?? for optimal
generation + demand schedule y
°yi= ([V]chsv [ﬁg]vcus» [ﬁd]vu [6d]V575V5) and X = (wvcumgvcuuvw)
and define 6; := §; — dv. (3)

Based on 7?7, we need to represent (a) failure and (b) dynamics for V, 6 and also w:

DAE Model (Mgeneric)

x =d(x; y), (slower timescale) (4a)
0 = pfe(x; y), (faster timescale) (4b)

where d represents the generator dynamics and pfe represents the power flow equations
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Deterministic Model

Bridge Static to Dynamic

We partition the set of P, Q, V, 0 at each bus into dynamics variables x and static
parameters y
@ Start dynamics at an “equilibrium” point X defined implicitly via ?? for optimal
generation + demand schedule y
°yi= ([V]chsv [ﬁg]vcus» [ﬁd]vu [6d]V575V5) and X = (wvcumgvcuuvw)
and define 6; := §; — dv. (3)

Based on 7?7, we need to represent (a) failure and (b) dynamics for V, 6 and also w:

DAE Model (M jassical), more detail under lossless assumption

6 = wi — ws, iegus
Mijiw; = Piy — 37 ViViBysin(0; — 0;) — Di(w; — ws), i€GUS
JjEB
0= —Ply — > ViV;Bjsin(6; — 0;), iec
JjEB
0= Qe — > ViV;Bj cos(6; — 6)), iec
JjeB

(52)
(5b)

(5¢)

(5d)
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Deterministic Model

Bridge Static to Dynamic

We partition the set of P, Q, V, 0 at each bus into dynamics variables x and static
parameters y
@ Start dynamics at an “equilibrium” point X defined implicitly via ?? for optimal
generation + demand schedule y
°yi= ([V]chsv [ﬁg]vcus» [ﬁd]vu [6d]V575V5) and X = (wvcumgvcuuvw)
and define 6; := §; — dv. (3)

Based on 7?7, we need to represent (a) failure and (b) dynamics for V, 6 and also w:

Failure Mechanism
For line £ = (i,j), complex current flow, line energy, and “safe” domain are:
v = (0 — %)y
O¢(x) = |ie|* = igi; = b (\/,-2 —2V;Vjcos(0; — 6;) + \/12)
D = {x:0(x) < O }.

(6a)
(6b)
(6¢)
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Hamiltonian Formulation

@ Structure of DAE includes “mismatch” vectors

o “Mismatch” is central to the system’s behavior and motivates a reformulation

DAE Model (Muamittonian) [?+ ?]

d_j VWH(wa 05 Vv .y)
0| = =5) | VoH(w,0,V; y) (7a)
0 VvH(w,0,V; y)

for a scalar function H” (parametrized by y) such that the partials are related to the
mismatches:

VoH = Mwyg, (8a)
VeHy = FVGUL - [Pnet]chL (Sb)
VvH =V Y (Gy, — [Pretlv,) (8¢)

and where J and S are appropriate skew-symmetric and diagonal “structure” matrices
representing network interconnection and damping, respectively
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/1



Model  Deterministic Modifications

Singular Perturbation Model

DAE Model Issues

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019



Model  Deterministic Modifications

Singular Perturbation Model

DAE Model Issues
o Above DAE models are not globally well-posed [?]

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019



Model  Deterministic Modifications

Singular Perturbation Model

DAE Model Issues
o Above DAE models are not globally well-posed [?]
@ DAEs are harder to simulate than ODEs

Roth, J. (Argonne National Laboratory) Recent Work

10 April 2019

10



Model  Deterministic Modifications

Singular Perturbation Model

DAE Model Issues
o Above DAE models are not globally well-posed [?]
@ DAEs are harder to simulate than ODEs

@ Perhaps we can relax the power flow constraint assumption

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019
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Singular Perturbation Model (MopE)

Relax the fast dynamics:

d) = _Awwva — AWQVBH
Xx=AVH =S0 = AoVeH — AgpVeH
V =AwVH

for singular perturbation parameter Dy, and A = J — S defined as:

1 —1il —1 T
_MVGus DVGUSTMVGUS _M_\r)cus TlT 0
A= Myt T =T2 Dy, T, 0
0 Dy'hy,

where T7, T, are structure matrices

(92)

(10)

Roth, J. (Argonne National Laboratory) Recent Work
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Energy Energy Landscape

Scalar Potential

o Structure of A: full-rank, negative-semidefinite (VH(X)T AVH(X) < 0 along any

solution trajectory X)
@ Equilibrium points can be characterized by VH(x) =0
o LasSalle’s theorem for V2? > 0 hints at Lyapunov function
First Integral
Path integral from equilibrium x© = % to time T:

(T) (T) (T)
. - (wVGus’OVGuL’VVL ) VoH
H (x©, x(M) = VoH’

0 0 y
0,69, Y,) VvH

dw
, | da > (11)
dv
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o Structure of A: full-rank, negative-semidefinite (VH(X)T AVH(X) < 0 along any
solution trajectory X)

@ Equilibrium points can be characterized by VH(x) =0

o LasSalle’s theorem for V2? > 0 hints at Lyapunov function

First Integral

Path integral from equilibrium x© = % to time T:

- s WD VR [dw
1 (xO, x(M) = VoH' |, | da (11)
0. 6%, V,) VvH” dv

Scalar Potential

Path-independent scalar potential [?, ?, ?, ?]:

1

2
+ {[Quel$) tog (V7)) + €

7_[y(x(0)7 X(T)) —

Veur

1 oy,
@) Myge w7 + S B + (1Pal),,, 057 )
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Scalar Potential

o Structure of A: full-rank, negative-semidefinite (VH(X)T AVH(X) < 0 along any
solution trajectory X)

@ Equilibrium points can be characterized by VH(x) =0

o LasSalle’s theorem for V2? > 0 hints at Lyapunov function

First Integral

Path integral from equilibrium x© = % to time T:

(wggus’eg’TG)UL’v‘(’?) VoH” dw
H (X0, x(My = < VoH' |, | da > (11)
(0, QQ,GUL,VgL) VvHY dv
Scalar Potential
Path-independent scalar potential [?, ?, ?, ?]:
T 1 (T 7, 1long. 0 T
W (D) = 50 Mgl + SWBW + ([P, 65)

+ ([Qual') Tog (VE]))
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Energy Minimization

e V?H(X) = 0 at stable equilibrium x
@ Interpretation of X as a minimum energy state within an optimization framework

@ Define an energy optimization problem to determine the point of lowest energy line ¢
has failed

Constrained Minimization Problem

v

minimize  H(x) (14a)
s.t. O¢(x) = ©7™ (14b)
Definition (Minimizers)
X = argmin?? (15a)
x* = argmin?? (15b)

v

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019
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Energy Energy Landscape

Constraint

Phase-space constraint boundary will only involve at most four variables V;, V;, 0;,6;:

v
« constraint boundary
vi constraint 3 boundary g star
o constraint boundary 1150 @ rvar 1100
constraint 2 boundary 4 sstar
@ ror
1125 Lors
004 1100 Los0
002
1075 Lo
000%
1050
1000
02
1025
004 0975
1000
0950
02 0975
016 554 085 0925

020 15
o

Local energy surface, left: discretized constraint surface defined by line-2, right: line-3

(Argonne National Laboratory) Recent Work
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Phase-space energy surface:

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019



Energy Energy Landscape

Energy Landscape

Phase-space energy surface:

Hamiltonian energy (**) []

Constraint surface defined by: 3

o xbar 02
o star
% wstar-projected

fB10ua (210}

(Argonne National Laboratory) Recent Work



y Landscape

Phase-space energy surface:

Hamiltonian energy (**)

Constraint surface defined by: 2

)
total enern

* xprojected

(#4) note: energy is computed projecting other coordinates onto xbar

Wider energy surface, left:

Roth, J

(Argonne National Laboratory)

Energy

Energy Landscape

Hamiltonian energy (**)

Constraint surface defined by: 3

* xprojected

(oo
w588

(#4) note: energy is computed projecting other coordinates onto xbar

Recent Work

energy and constraint surface (black) defined by line-2, right: line-3




Energy Energy Landscape

Energy Landscape

Phase-space energy surface:

* xprojected

s 2

fru WO

total energy
Il

Global energy surface, left: energy and constraint surface (black) defined by line-3, right: line-3
different view

10 April 2019

Recent Work

Roth, J. (Argonne National Laboratory)



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

@ Represent load fluctuations as Gaussian perturbations

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

@ Represent load fluctuations as Gaussian perturbations

@ Perturb P} and Q) at load buses i € V; through mismatch vectors

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]
@ Represent load fluctuations as Gaussian perturbations
@ Perturb P} and Q) at load buses i € V; through mismatch vectors

@ Perturb Pé, at generator buses implicitly through mismatch vectors

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019 16



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

Represent load fluctuations as Gaussian perturbations

Perturb P}, and Q) at load buses i € V; through mismatch vectors

Perturb Pé, at generator buses implicitly through mismatch vectors

Once a line fails, it is “removed” from the network, and topology Y changes,
changing H

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

Represent load fluctuations as Gaussian perturbations

Perturb P, and Q] at load buses i € V; through mismatch vectors

Perturb Pé', at generator buses implicitly through mismatch vectors

Once a line fails, it is “removed” from the network, and topology Y changes,
changing H

SDE Model (Mspg)

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019 16 /1



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

Represent load fluctuations as Gaussian perturbations

Perturb P, and Q] at load buses i € V; through mismatch vectors

Perturb Pé', at generator buses implicitly through mismatch vectors

Once a line fails, it is “removed” from the network, and topology Y changes,
changing H

SDE Model (Mspg)

ax® = p (x$f>) V2o (xﬁ)) aw® (16)

where:

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019 16 /1



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

Represent load fluctuations as Gaussian perturbations

Perturb P, and Q] at load buses i € V; through mismatch vectors

Perturb Pé' at generator buses implicitly through mismatch vectors

Once a line fails, it is “removed” from the network, and topology Y changes,
changing H

SDE Model (Mspg)

ax® = p (XP) V2o (xﬁ)) aw® (16)

where:
° b (x@) =(J—7S5) - VH (xg)) , (17) summarizes the deterministic power grid
dynamics (drift, whose mean equilibrium is parametrized by y)

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019 16 /1



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

Represent load fluctuations as Gaussian perturbations

Perturb P, and Q] at load buses i € V; through mismatch vectors

Perturb Pé' at generator buses implicitly through mismatch vectors

Once a line fails, it is “removed” from the network, and topology Y changes,
changing H

SDE Model (Mspg)

ax® = p (XP) V2o (xﬁ)) aw® (16)

where:
° b (x@) =(J—7S5) - VH (xg)) , (17) summarizes the deterministic power grid
dynamics (drift, whose mean equilibrium is parametrized by y)

o o(x!9) = /7S, (18) summarizes the disturbances (diffusion)

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019 16 /1



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

Represent load fluctuations as Gaussian perturbations

Perturb P, and Q] at load buses i € V; through mismatch vectors

Perturb Pé' at generator buses implicitly through mismatch vectors

Once a line fails, it is “removed” from the network, and topology Y changes,
changing H

SDE Model (Mspg)
ax® = p (XP) V2o (xﬁ)) aw® (16)

where:
° b (XL”) =(J—7S5) - VH (xg)) , (17) summarizes the deterministic power grid
dynamics (drift, whose mean equilibrium is parametrized by y)
o o(x) = \/~S, (18) summarizes the disturbances (diffusion)

@ y represents “friction” (a damping parameter)

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019 16 /1



Energy  Applying Large-Deviation Theory

SDE Formulation

Stochastic Perturbations [?]

Represent load fluctuations as Gaussian perturbations

Perturb P, and Q] at load buses i € V; through mismatch vectors

Perturb Pé' at generator buses implicitly through mismatch vectors

Once a line fails, it is “removed” from the network, and topology Y changes,
changing H

SDE Model (Mspg)

ax® = p (XP) V2o (xﬁ)) aw® (16)

where:
° b (XL”) =(J—7S5) - VH (xg)) , (17) summarizes the deterministic power grid
dynamics (drift, whose mean equilibrium is parametrized by y)
o o(x) = \/~S, (18) summarizes the disturbances (diffusion)

@ y represents “friction” (a damping parameter)

@ T represents “temperature”
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Failure Rate Approximation

SDE Model Ergodicity

@ Energy relates spatial averages to time averages

@ For v, 7 > 0 [?], solutions to ?? are known to be ergodic with respect to the
invariant measure:

pr (x) o< exp{—H(x)/7}

(19)

v

Large-Deviation Theory (Overview)

@ Low-noise setting 7 < 1

o Interested in computing “transition” times: occurrence of chemical compounds
forming, or XYZ, or failure of transmission line

@ Standard results for computing transition rates between metastable equilibria of
reversible diffusion processes (Arrhenius): time o e*E/7

o Guided by saddle-points and potential energy hurdle

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019
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Energy  Applying Large-Deviation Theory

Irreversible Escape Rate

Irreversible Diffusions

Interested in approximating first passage time T3, = inf{t: t > 0, X e oD}, (20)

Our SDE has rank-deficient diffusion matrix and is “degenerate” but can be handled
with footwork (David)

Modified potential: define a “quasi’-potential V(X,x) = H(x) — H(X), (21)

Reaction rate is governed by the law with:

li E[T5p] = min V(x 22
. TE 70l = ip, VI X) e

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019



Energy  Applying Large-Deviation Theory

Irreversible Escape Rate Approximation

Crossing Assumptions

@ Non-characteristic constraint boundary (correct “direction” of crossing)

@ n(x)"Sn(x) > 0 for x € ID and n(x) the constraint’s unit normal (noise in the
direction of the constraint)

Ly N
O I e )

e

Crossing events adapted to Van der Pol system portrait3

Bruzelius, 2003

Roth, J. (Argonne National Laboratory)

Recent Work
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Energy  Applying Large-Deviation Theory

Irreversible Escape Rate Approximation

Crossing Assumptions

@ Non-characteristic constraint boundary (correct “direction” of crossing)

@ n(x)"Sn(x) > 0 for x € ID and n(x) the constraint’s unit normal (noise in the
direction of the constraint)

Escape Rate [?, 7]

Idea is to use a Laplace approximation around the constrained minimizer:

det Hess H(X) { Viz.2) Y(2), V(=
/ZEBD,/ — (V'(2), Vn(2)) dz (23)

~ (V)T S VM (x*) detl—zless;{( X) exp{ H(X*)fH(F()} (24)

T

where B captures curvature and volume properties at x*

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019
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Contribution of Prefactor

energy factor and prefactor contribution to AT

40

30

2

prefactor contribution
s
5

energy factor contribution

10-15

10-18

— P 1072
—

— oh

1072 1071 100

Computation of A\™ for various temperatures; split into prefactor (polynomial) and energy factor
(exponential)
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Experiments ~ Simulation Framework

Simulation Framework

Integration
O Initialize x© = % from an OPF solution (X, 7)
@ Integrate SDE (??) one step and monitor ©; for particular line ¢
Q If ©, > ©F%, then record time, otherwise return to (2)

left: 3bus structure from [?]

Roth, J. (Argonne National Laboratory) Recent Work

10 April 2019
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Integration Verification for Failure Rate

Setting integration parameters (step-size):

— simulated / analytic ratio
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Inverse of average failure time (1/sec) over 5,000 failures (25 experiments of 200 failures) for
3bus model line 2 at different step sizes; as step-size decreases, we observe low-noise asymptotic

agreement between simulated and analytic approximations of E [A]
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Failures Across Lines (line-2)

= exp distn of failure times, 5e+03 (unbiased) samples
tau=0.007: Agip, = 2.12€ — 04, A, = 2.53e — 04
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left: inverse of average failure time (1/sec) over 5,000 failures (25 experiments of 200 failures),
right: approximate exponential distribution of failure times
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Failures Across Lines (line-3)

= exp distn of failure times, 1e+04 (unbiased) samples
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left: inverse of average failure time (1/sec) over 10,000 failures (50 experiments of 200 failures),
right: approximate exponential distribution of failure times
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Failures Across Lines (line-1)

= exp distn of failure times, 1e+04 (unbiased) samples
tau=1.0: Asim = 1.27€ — 03, Asns =9.05e - 23
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note: A is calculated excluding the prefactor. left: inverse of average failure time (1/sec) over
10,000 failures (50 experiments of 200 failures), right: approximate exponential distribution of
failure times
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Failures Across Line Limits
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left: line-2 failure rate across line limit ©3'%%, right: line-3 failure rate across line limit ©3'*
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Experiments ~ Validation

Sensitivity to Dispatch

AT at T=0.01 across active power generation
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Line-2 and line-3 failure rate versus active power generatrion Pg
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Experiments ~ Validation

Validation Summary

Takeaways
@ Observe bias for temperatures “not sufficiently low”
o “Sufficiently low” is relative to boundary

o Heuristic measure is when exit points cluster around x*, not just good agreement
between analytic and simulated A\

@ Prefactor correction is important; escape point is not a true saddle point

Roth, J. (Argonne National Laboratory) Recent Work 10 April 2019 29
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@ One step toward designing an operating point with stochastic security with load and
generator perturbations

o Difficult to know when 7 is low enough; can estimate 7 from data but then might
need to tune -y for real network

Next
o Larger model (working on simulations and validation for 30-bus model)

o Failure sequences (parallelize x* calculation) and build Markov network
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