Cascading Failures and Energy Landscapes for Power Systems LANS Seminar

Mihai Anitescu, David Barajas-Solano, Panos Stinis, Jonathan Weare, Adrian Maldonado, Anirudh Subramanyam, Jake Roth

10 April 2019

Contents

- Introduction
 - Motivation
 - Power Grid Overview
- Model
 - Deterministic Model
 - Deterministic Modifications
- 3 Energy
 - Energy Landscape
 - Applying Large-Deviation Theory
- Experiments
 - Simulation Framework
 - Validation
- Conclusions

Power Grid Problems

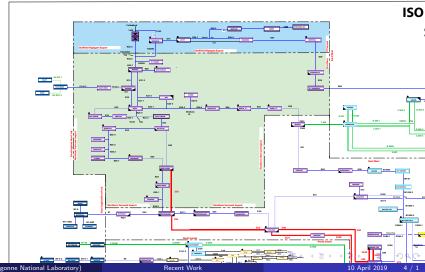
3 / 1

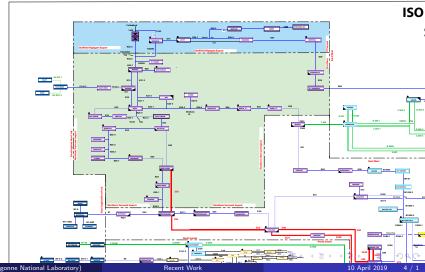
Power Grid Problems

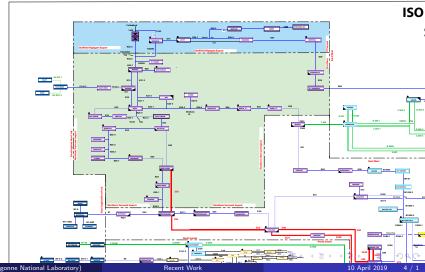
Cascad(a)-ing Failure

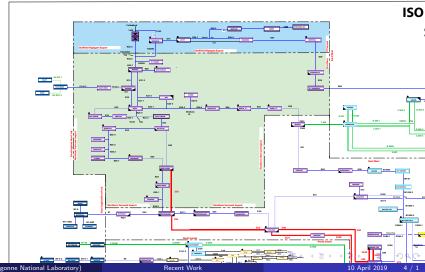
"Every time we touch, I feel the static" - Cascada¹, and also, squirrels

Every time we touch, Maggie Reilly, 1992









5 / 1

Static Problems

Static Problems

Optimal Power Flow (OPF)

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF
- "XYZ"-constrained OPF across time

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF
- "XYZ"-constrained OPF across time

Dynamic Problems

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF
- "XYZ"-constrained OPF across time

Dynamic Problems

• State estimation: generate inputs for operational tools

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF
- "XYZ"-constrained OPF across time

Dynamic Problems

- State estimation: generate inputs for operational tools
- Dynamic response to "contingencies"

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF
- "XYZ"-constrained OPF across time

Dynamic Problems

- State estimation: generate inputs for operational tools
- Dynamic response to "contingencies"

Our Problem

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF
- "XYZ"-constrained OPF across time

Dynamic Problems

- State estimation: generate inputs for operational tools
- Dynamic response to "contingencies"

Our Problem

• Goal: Design a static operating point with "good" dynamics properties

Static Problems

- Optimal Power Flow (OPF)
- "XYZ"-constrained OPF
- "XYZ"-constrained OPF across time

Dynamic Problems

- State estimation: generate inputs for operational tools
- Dynamic response to "contingencies"

Our Problem

- Goal: Design a static operating point with "good" dynamics properties
- Metric: Line failure probability

6 / 1

- Represent voltage $v^{(t)}$ and current $i^{(t)}$ by sinusoidals
- Convert time-domain to phasor: $x^{(t)} = A\cos(\omega t + \delta) = \Re\{Ae^{i\phi}e^{i\omega t}\} = \Re\{\dot{X}e^{i\omega t}\}$

- Represent voltage $v^{(t)}$ and current $i^{(t)}$ by sinusoidals
- Convert time-domain to phasor: $x^{(t)} = A\cos(\omega t + \delta) = \Re\{Ae^{i\phi}e^{i\omega t}\} = \Re\{\dot{X}e^{i\omega t}\}$
- Algebraic phasor manipulations (i.e., Ohm, Kirchoff, etc.) depend on a common ω and a reference δ

- Represent voltage $v^{(t)}$ and current $i^{(t)}$ by sinusoidals
- Convert time-domain to phasor: $\mathbf{x}^{(t)} = A\cos(\omega t + \delta) = \Re\{A\mathbf{e}^{\mathrm{i}\,\phi}\mathbf{e}^{\mathrm{i}\,\omega t}\} = \Re\{\dot{X}\mathbf{e}^{\mathrm{i}\,\omega t}\}$
- Standard to use (ω and δ -relative) voltage variables: $\tilde{v} := Ve^{i\theta}$ (1)
- ullet Compute scalar (rms) power values for the real and complex components of v and i

Network and Transmission Equations

Network and Transmission Equations

Our network $\mathcal{N} = \{\mathcal{V}, \mathcal{E}\}$ will contain:

• Buses (vertices, $V = V_G \cup V_L \cup V_S$): generator (PV), load (PQ), or slack (P θ)

Network and Transmission Equations

- Buses (vertices, $V = V_G \cup V_L \cup V_S$): generator (PV), load (PQ), or slack (P θ)
- Lines (edges, \mathcal{E}): transfer power/current between bus i and j

Network and Transmission Equations

- Buses (vertices, $V = V_G \cup V_L \cup V_S$): generator (PV), load (PQ), or slack (P θ)
- ullet Lines (edges, ${\cal E}$): transfer power/current between bus i and j
- Admittance matrix (Laplacian): $\tilde{Y} = G + i B$

Network and Transmission Equations

- Buses (vertices, $V = V_G \cup V_L \cup V_S$): generator (PV), load (PQ), or slack (P θ)
- Lines (edges, \mathcal{E}): transfer power/current between bus i and j
- Admittance matrix (Laplacian): $\tilde{Y} = G + i B$
- Net active and reactive demand $P_{\text{net}}^i \coloneqq P_d^i P_g^i$ and $Q_{\text{net}}^i \coloneqq Q_d^i Q_g^i \; \forall \; \text{bus} \; i \in \mathcal{V}$

Network and Transmission Equations

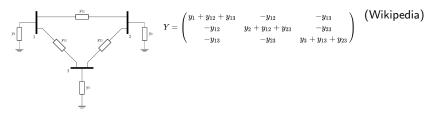
- Buses (vertices, $V = V_G \cup V_L \cup V_S$): generator (PV), load (PQ), or slack (P θ)
- Lines (edges, \mathcal{E}): transfer power/current between bus i and j
- Admittance matrix (Laplacian): $\tilde{Y} = G + i B$
- Net active and reactive demand $P_{\text{net}}^i := P_d^i P_g^i$ and $Q_{\text{net}}^i := Q_d^i Q_g^i \; \forall$ bus $i \in \mathcal{V}$ and will transfer power according to the AC power flow equations which compute:

Network and Transmission Equations

Our network $\mathcal{N} = \{\mathcal{V}, \mathcal{E}\}$ will contain:

- Buses (vertices, $V = V_G \cup V_L \cup V_S$): generator (PV), load (PQ), or slack (P θ)
- Lines (edges, \mathcal{E}): transfer power/current between bus i and j
- Admittance matrix (Laplacian): $\tilde{Y} = G + i B$
- Net active and reactive demand $P_{\text{net}}^i := P_d^i P_g^i$ and $Q_{\text{net}}^i := Q_d^i Q_g^i \; \forall$ bus $i \in \mathcal{V}$ and will transfer power according to the AC power flow equations which compute:

$$S := P + i Q = \tilde{v} \odot [\tilde{Y}\tilde{v}]^*, \quad \text{partitioned as } F(V, \theta) \equiv P, \quad G(V, \theta) \equiv Q$$
 (2)



Deterministic Model

8 / 1

Bridge Static to Dynamic

Bridge Static to Dynamic

We partition the set of P, Q, V, θ at each bus into dynamics variables x and static parameters y

Bridge Static to Dynamic

We partition the set of P,Q,V,θ at each bus into dynamics variables x and static parameters y

- ullet Start dynamics at an "equilibrium" point $ar{x}$ defined implicitly via $\ref{eq:condition}$ for optimal generation + demand schedule $ar{y}$
- $\bullet \ \ \bar{y} := ([\overline{V}]_{\mathcal{V}_{G \cup S}}, [\overline{P}_g]_{\mathcal{V}_{G \cup S}}, [\overline{P}_d]_{\mathcal{V}_L}, [\overline{Q}_d]_{\mathcal{V}_L}, \delta_{\mathcal{V}_S}) \ \text{and} \ \ \bar{x} := (\overline{\omega}_{\mathcal{V}_{G \cup S}}, \overline{\theta}_{\mathcal{V}_{G \cup L}}, \overline{V}_{\mathcal{V}_L})$

Bridge Static to Dynamic

We partition the set of P,Q,V,θ at each bus into dynamics variables x and static parameters y

- \bullet Start dynamics at an "equilibrium" point \bar{x} defined implicitly via $\ref{eq:continuous}$ for optimal generation + demand schedule \bar{y}
- $\bar{y} := ([\overline{V}]_{\mathcal{V}_{G \cup S}}, [\overline{P}_g]_{\mathcal{V}_{G \cup S}}, [\overline{P}_d]_{\mathcal{V}_L}, [\overline{Q}_d]_{\mathcal{V}_L}, \delta_{\mathcal{V}_S})$ and $\bar{x} := (\overline{\omega}_{\mathcal{V}_{G \cup S}}, \overline{\theta}_{\mathcal{V}_{G \cup L}}, \overline{V}_{\mathcal{V}_L})$ and define $\theta_i := \delta_i \delta_{\mathcal{V}_S}$ (3)

Bridge Static to Dynamic

We partition the set of P, Q, V, θ at each bus into dynamics variables x and static parameters y

- \bullet Start dynamics at an "equilibrium" point \bar{x} defined implicitly via $\ref{eq:continuous}$ for optimal generation + demand schedule \bar{y}
- $\bar{y} := ([\overline{V}]_{V_{G \cup S}}, [\overline{P}_g]_{V_{G \cup S}}, [\overline{P}_d]_{V_L}, [\overline{Q}_d]_{V_L}, \delta_{V_S})$ and $\bar{x} := (\overline{\omega}_{V_{G \cup S}}, \overline{\theta}_{V_{G \cup L}}, \overline{V}_{V_L})$ and define $\theta_i := \delta_i \delta_{V_S}$ (3)

Based on \ref{Based} , we need to represent (a) failure and (b) dynamics for V, θ and also ω :

Bridge Static to Dynamic

We partition the set of P, Q, V, θ at each bus into dynamics variables x and static parameters y

- Start dynamics at an "equilibrium" point \bar{x} defined implicitly via $\ref{eq:condition}$ for optimal generation + demand schedule \bar{y}
- $\bar{y} := ([\overline{V}]_{V_{G \cup S}}, [\overline{P}_g]_{V_{G \cup S}}, [\overline{P}_d]_{V_L}, [\overline{Q}_d]_{V_L}, \delta_{V_S})$ and $\bar{x} := (\overline{\omega}_{V_{G \cup S}}, \overline{\theta}_{V_{G \cup L}}, \overline{V}_{V_L})$ and define $\theta_i := \delta_i \delta_{V_S}$ (3)

Based on ??, we need to represent (a) failure and (b) dynamics for V, θ and also ω :

DAE Model (Mgeneric)

$$\dot{x} = d(x; y),$$
 (slower timescale) (4a)

$$0 = pfe(x; y),$$
 (faster timescale) (4b)

where d represents the generator dynamics and pfe represents the power flow equations

Bridge Static to Dynamic

We partition the set of P, Q, V, θ at each bus into dynamics variables x and static parameters y

- Start dynamics at an "equilibrium" point \bar{x} defined implicitly via $\ref{eq:condition}$ for optimal generation + demand schedule \bar{y}
- $\bar{y} := ([\overline{V}]_{V_{G \cup S}}, [\overline{P}_g]_{V_{G \cup S}}, [\overline{P}_d]_{V_L}, [\overline{Q}_d]_{V_L}, \delta_{V_S})$ and $\bar{x} := (\overline{\omega}_{V_{G \cup S}}, \overline{\theta}_{V_{G \cup L}}, \overline{V}_{V_L})$ and define $\theta_i := \delta_i \delta_{V_S}$ (3)

Based on ??, we need to represent (a) failure and (b) dynamics for V, θ and also ω :

DAE Model ($\mathcal{M}_{classical}$), more detail under lossless assumption

$$\dot{\theta}_i = \omega_i - \omega_{\mathcal{S}}, \qquad \qquad i \in \mathcal{G} \cup \mathcal{S}$$

$$M_{ii}\omega_i = P_{\mathsf{net}}^i - \sum_{i \in \mathcal{B}} V_i V_j B_{ij} \sin(\theta_i - \theta_j) - D_i(\omega_i - \omega_{\mathcal{S}}), \quad i \in \mathcal{G} \cup \mathcal{S}$$
 (5b)

$$0 = -P_{\mathsf{net}}^i - \sum_{i \in \mathcal{B}} V_i V_j B_{ij} \sin(\theta_i - \theta_j), \qquad i \in \mathcal{L}$$
 (5c)

$$0 = Q_{\text{net}}^{i} - \sum_{i \in \mathcal{B}} V_{i} V_{j} B_{ij} \cos(\theta_{i} - \theta_{j}), \qquad i \in \mathcal{L}$$
 (5d)

(5a)

Bridge Static to Dynamic

We partition the set of P, Q, V, θ at each bus into dynamics variables x and static parameters y

- Start dynamics at an "equilibrium" point \bar{x} defined implicitly via $\ref{eq:condition}$ for optimal generation + demand schedule \bar{y}
- $\bar{y} := ([\overline{V}]_{V_{G \cup S}}, [\overline{P}_g]_{V_{G \cup S}}, [\overline{P}_d]_{V_L}, [\overline{Q}_d]_{V_L}, \delta_{V_S})$ and $\bar{x} := (\overline{\omega}_{V_{G \cup S}}, \overline{\theta}_{V_{G \cup L}}, \overline{V}_{V_L})$ and define $\theta_i := \delta_i \delta_{V_S}$ (3)

Based on ??, we need to represent (a) failure and (b) dynamics for V, θ and also ω :

Failure Mechanism

For line $\ell = (i, j)$, complex current flow, line energy, and "safe" domain are:

$$\tilde{i}_{\ell} \coloneqq (\tilde{v}_i - \tilde{v}_j) y_{ij} \tag{6a}$$

$$\Theta_{\ell}(x) := |\tilde{i}_{\ell}|^2 = \tilde{i}_{\ell}\tilde{i}_{\ell}^* = b_{ij}^2 \left(V_i^2 - 2V_i V_j \cos(\theta_i - \theta_j) + V_j^2 \right)$$
(6b)

$$D := \{x : \Theta_I(x) < \Theta_I^{\mathsf{max}}\}. \tag{6c}$$

9 / 1

- Structure of DAE includes "mismatch" vectors
- "Mismatch" is central to the system's behavior and motivates a reformulation

- Structure of DAE includes "mismatch" vectors
- "Mismatch" is central to the system's behavior and motivates a reformulation

$$\begin{bmatrix} \dot{\omega} \\ \dot{\theta} \\ 0 \end{bmatrix} = (J - S) \begin{bmatrix} \nabla_{\omega} \mathcal{H}(\omega, \theta, V; y) \\ \nabla_{\theta} \mathcal{H}(\omega, \theta, V; y) \\ \nabla_{V} \mathcal{H}(\omega, \theta, V; y) \end{bmatrix}$$
(7a)

- Structure of DAE includes "mismatch" vectors
- "Mismatch" is central to the system's behavior and motivates a reformulation

DAE Model (
$$\mathcal{M}_{Hamiltonian}$$
) [?, ?]

for a scalar function \mathcal{H}^y (parametrized by y)

- Structure of DAE includes "mismatch" vectors
- "Mismatch" is central to the system's behavior and motivates a reformulation

DAE Model (
$$\mathcal{M}_{\mathsf{Hamiltonian}}$$
) [?, ?]

for a scalar function \mathcal{H}^y (parametrized by y) such that the partials are related to the mismatches:

- Structure of DAE includes "mismatch" vectors
- "Mismatch" is central to the system's behavior and motivates a reformulation

DAE Model ($\mathcal{M}_{\mathsf{Hamiltonian}}$) [?, ?]

$$\begin{bmatrix} \dot{\omega} \\ \dot{\theta} \\ 0 \end{bmatrix} = (J - S) \begin{bmatrix} \nabla_{\omega} \mathcal{H}(\omega, \theta, V; y) \\ \nabla_{\theta} \mathcal{H}(\omega, \theta, V; y) \\ \nabla_{V} \mathcal{H}(\omega, \theta, V; y) \end{bmatrix}$$
(7a)

for a scalar function \mathcal{H}^y (parametrized by y) such that the partials are related to the mismatches:

$$\nabla_{\omega} \mathcal{H}^{y} := M \omega_{\mathcal{V}_{G \cup S}} \tag{8a}$$

$$\nabla_{\theta} \mathcal{H}^{y} := F_{\mathcal{V}_{G \cup L}} - [P_{\mathsf{net}}]_{\mathcal{V}_{G \cup L}} \tag{8b}$$

$$\nabla_{V} \mathcal{H}^{y} := V^{-1} (G_{\mathcal{V}_{L}} - [P_{\mathsf{net}}]_{\mathcal{V}_{L}}) \tag{8c}$$

- Structure of DAE includes "mismatch" vectors
- "Mismatch" is central to the system's behavior and motivates a reformulation

DAE Model (M_{Hamiltonian}) [?, ?]

$$\begin{bmatrix} \dot{\omega} \\ \dot{\theta} \\ 0 \end{bmatrix} = (J - S) \begin{bmatrix} \nabla_{\omega} \mathcal{H}(\omega, \theta, V; y) \\ \nabla_{\theta} \mathcal{H}(\omega, \theta, V; y) \\ \nabla_{V} \mathcal{H}(\omega, \theta, V; y) \end{bmatrix}$$
(7a)

for a scalar function \mathcal{H}^y (parametrized by y) such that the partials are related to the mismatches:

$$\nabla_{\omega} \mathcal{H}^{\mathsf{y}} := \mathsf{M}\omega_{\mathcal{V}_{\mathsf{G} \cup \mathsf{S}}} \tag{8a}$$

$$\nabla_{\theta} \mathcal{H}^{y} := F_{\mathcal{V}_{G \cup L}} - [P_{\mathsf{net}}]_{\mathcal{V}_{G \cup L}} \tag{8b}$$

$$\nabla_{V}\mathcal{H}^{y} := V^{-1}(G_{\mathcal{V}_{L}} - [P_{\mathsf{net}}]_{\mathcal{V}_{L}}) \tag{8c}$$

and where J and S are appropriate skew-symmetric and diagonal "structure" matrices representing network interconnection and damping, respectively

10 April 2019

DAE Model Issues

DAE Model Issues

• Above DAE models are not globally well-posed [?]

DAE Model Issues

- Above DAE models are not globally well-posed [?]
- DAEs are harder to simulate than ODEs

DAE Model Issues

- Above DAE models are not globally well-posed [?]
- DAEs are harder to simulate than ODEs
- Perhaps we can relax the power flow constraint assumption

11 / 1

Singular Perturbation Model (\mathcal{M}_{ODE})

Singular Perturbation Model (\mathcal{M}_{ODE})

Relax the fast dynamics:

$$\dot{x} = A \nabla \mathcal{H} \equiv \begin{cases} \dot{\omega} &= -A_{\omega\omega} \nabla_{\omega} \mathcal{H} - A_{\omega\theta} \nabla_{\theta} \mathcal{H} \\ \dot{\theta} &= A_{\omega\theta} \nabla_{\omega} \mathcal{H} - A_{\theta\theta} \nabla_{\theta} \mathcal{H} \\ \dot{V} &= A_{VV} \nabla_{V} \mathcal{H} \end{cases}$$
(9a)

Singular Perturbation Model (\mathcal{M}_{ODE})

Relax the fast dynamics:

$$\dot{x} = A \nabla \mathcal{H} \equiv \begin{cases} \dot{\omega} &= -A_{\omega\omega} \nabla_{\omega} \mathcal{H} - A_{\omega\theta} \nabla_{\theta} \mathcal{H} \\ \dot{\theta} &= A_{\omega\theta} \nabla_{\omega} \mathcal{H} - A_{\theta\theta} \nabla_{\theta} \mathcal{H} \\ \dot{V} &= A_{VV} \nabla_{V} \mathcal{H} \end{cases}$$
(9a)

for singular perturbation parameter D_V , and A = J - S defined as:

Singular Perturbation Model (\mathcal{M}_{ODE})

Relax the fast dynamics:

$$\dot{x} = A \nabla \mathcal{H} \equiv \begin{cases} \dot{\omega} &= -A_{\omega\omega} \nabla_{\omega} \mathcal{H} - A_{\omega\theta} \nabla_{\theta} \mathcal{H} \\ \dot{\theta} &= A_{\omega\theta} \nabla_{\omega} \mathcal{H} - A_{\theta\theta} \nabla_{\theta} \mathcal{H} \\ \dot{V} &= A_{VV} \nabla_{V} \mathcal{H} \end{cases}$$
(9a)

for singular perturbation parameter D_V , and A = J - S defined as:

$$A := \begin{bmatrix} -M_{\mathcal{V}_{G \cup S}}^{-1} D_{\mathcal{V}_{G \cup S}} M_{\mathcal{V}_{G \cup S}}^{-1} & -M_{\mathcal{V}_{G \cup S}}^{-1} T_1^{\top} & 0\\ M_{\mathcal{V}_{G \cup S}}^{-1} T_1^{\top} & -T_2^{\top} D_{\mathcal{V}_L} T_2^{\top} & 0\\ 0 & 0 & D_V^{-1} I_{\mathcal{V}_L} \end{bmatrix}$$
(10)

where T_1 , T_2 are structure matrices

• Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})

- Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})
- Equilibrium points can be characterized by $\nabla \mathcal{H}(x) = 0$

- Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})
- Equilibrium points can be characterized by $\nabla \mathcal{H}(x) = 0$
- \bullet LasSalle's theorem for $\nabla^2 \mathcal{H} \succ 0$ hints at Lyapunov function

- Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})
- Equilibrium points can be characterized by $\nabla \mathcal{H}(x) = 0$
- LasSalle's theorem for $\nabla^2 \mathcal{H} \succ 0$ hints at Lyapunov function

First Integral

- Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})
- Equilibrium points can be characterized by $\nabla \mathcal{H}(x) = 0$
- LasSalle's theorem for $\nabla^2 \mathcal{H} \succ 0$ hints at Lyapunov function

First Integral

Path integral from equilibrium $x^{(0)} = \bar{x}$ to time T:

$$\mathcal{H}^{y}(x^{(0)}, x^{(T)}) := \int_{(0, \theta_{\mathcal{V}_{G \cup L}}^{0}, \mathcal{V}_{\mathcal{V}_{L}}^{0})}^{(\omega_{\mathcal{V}_{G \cup L}}^{(T)}, \theta_{\mathcal{V}_{G \cup L}}^{(T)}, \mathcal{V}_{\mathcal{V}_{L}}^{(T)})} \left\langle \begin{bmatrix} \nabla_{\omega} \mathcal{H}^{y} \\ \nabla_{\theta} \mathcal{H}^{y} \\ \nabla_{\mathcal{V}} \mathcal{H}^{y} \end{bmatrix}, \begin{bmatrix} \mathrm{d} w \\ \mathrm{d} a \\ \mathrm{d} v \end{bmatrix} \right\rangle$$
(11)

- Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})
- Equilibrium points can be characterized by $\nabla \mathcal{H}(x) = 0$
- LasSalle's theorem for $\nabla^2 \mathcal{H} \succ 0$ hints at Lyapunov function

First Integral

Path integral from equilibrium $x^{(0)} = \bar{x}$ to time T:

$$\mathcal{H}^{y}(\mathbf{x}^{(0)}, \mathbf{x}^{(T)}) := \int_{(0, \theta_{\mathcal{V}_{G \cup L}}^{0}, \mathcal{V}_{\mathcal{V}_{L}}^{0})}^{(\omega_{\mathcal{V}_{G \cup L}}^{(T)}, \mathcal{V}_{\mathcal{V}_{L}}^{(T)})} \left\langle \begin{bmatrix} \nabla_{\omega} \mathcal{H}^{y} \\ \nabla_{\theta} \mathcal{H}^{y} \\ \nabla_{\mathcal{V}} \mathcal{H}^{y} \end{bmatrix}, \begin{bmatrix} \mathrm{d} \mathbf{w} \\ \mathrm{d} \mathbf{a} \\ \mathrm{d} \mathbf{v} \end{bmatrix} \right\rangle$$
(11)

Scalar Potential

- Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})
- Equilibrium points can be characterized by $\nabla \mathcal{H}(x) = 0$
- LasSalle's theorem for $\nabla^2 \mathcal{H} \succ 0$ hints at Lyapunov function

First Integral

Path integral from equilibrium $x^{(0)} = \bar{x}$ to time T:

$$\mathcal{H}^{y}(x^{(0)}, x^{(T)}) := \int_{(0, \theta_{\mathcal{V}_{G \cup L}}^{0}, \mathcal{V}_{\mathcal{V}_{L}}^{0})}^{(\omega_{\mathcal{V}_{G \cup L}}^{(T)}, \mathcal{V}_{\mathcal{V}_{L}}^{(T)})} \left\langle \begin{bmatrix} \nabla_{\omega} \mathcal{H}^{y} \\ \nabla_{\theta} \mathcal{H}^{y} \\ \nabla_{\mathcal{V}} \mathcal{H}^{y} \end{bmatrix}, \begin{bmatrix} \mathrm{d} w \\ \mathrm{d} a \\ \mathrm{d} v \end{bmatrix} \right\rangle$$
(11)

Scalar Potential

Path-independent scalar potential [?, ?, ?, ?]:

$$\mathcal{H}^{y}(x^{(0)}, x^{(T)}) = \frac{1}{2} (\omega^{(T)})^{\top} M_{\mathcal{V}_{G \cup S}} \omega^{(T)} + \frac{1}{2} \tilde{v}_{\mathcal{V}}^{H} B \, \tilde{v}_{\mathcal{V}} + \langle [P_{\mathsf{net}}]_{\mathcal{V}_{G \cup L}}^{(0)}, \, \theta_{\mathcal{V}_{G \cup L}}^{(T)} \rangle$$

$$+ \langle [Q_{\mathsf{net}}]_{\mathcal{V}_{I}}^{(0)}, \, \log \left(V_{\mathcal{V}_{I}}^{(T)} \right) \rangle + C$$

$$(12)$$

- Structure of A: full-rank, negative-semidefinite $(\nabla \mathcal{H}(\bar{x})^{\top} A \nabla \mathcal{H}(\bar{x}) \leq 0$ along any solution trajectory \bar{x})
- Equilibrium points can be characterized by $\nabla \mathcal{H}(x) = 0$
- LasSalle's theorem for $\nabla^2 \mathcal{H} \succ 0$ hints at Lyapunov function

First Integral

Path integral from equilibrium $x^{(0)} = \bar{x}$ to time T:

$$\mathcal{H}^{y}(x^{(0)}, x^{(T)}) := \int_{(0, \theta_{\mathcal{V}_{G \cup L}}^{0}, \mathcal{V}_{\mathcal{V}_{L}}^{0})}^{(\omega_{\mathcal{V}_{G \cup L}}^{(T)}, \theta_{\mathcal{V}_{G \cup L}}^{(T)}, \mathcal{V}_{\mathcal{V}_{L}}^{(T)})} \left\langle \begin{bmatrix} \nabla_{\omega} \mathcal{H}^{y} \\ \nabla_{\theta} \mathcal{H}^{y} \\ \nabla_{\mathcal{V}} \mathcal{H}^{y} \end{bmatrix}, \begin{bmatrix} \mathrm{d} w \\ \mathrm{d} a \\ \mathrm{d} v \end{bmatrix} \right\rangle$$
(11)

Scalar Potential

Path-independent scalar potential [?, ?, ?, ?]:

$$\mathcal{H}^{y}(x^{(T)}) = \frac{1}{2} (\omega^{(T)})^{\top} M_{\mathcal{V}_{G \cup S}} \omega^{(T)} + \frac{1}{2} \tilde{\mathbf{v}}_{\mathcal{V}}^{\mathbf{H}} B \, \tilde{\mathbf{v}}_{\mathcal{V}} + \langle [P_{\mathsf{net}}]_{\mathcal{V}_{G \cup L}}^{(0)}, \, \theta_{\mathcal{V}_{G \cup L}}^{(T)} \rangle$$

$$+ \langle [Q_{\mathsf{net}}]_{\mathcal{V}_{L}}^{(0)}, \, \log \left(V_{\mathcal{V}_{L}}^{(T)} \right) \rangle$$

$$(13)$$

Energy Landscape

Energy Minimization

ullet $abla^2 \mathcal{H}(ar{x}) \succeq 0$ at stable equilibrium $ar{x}$

- $\nabla^2 \mathcal{H}(\bar{x}) \succeq 0$ at stable equilibrium \bar{x}
- ullet Interpretation of $ar{x}$ as a minimum energy state within an optimization framework

- $\nabla^2 \mathcal{H}(\bar{x}) \succeq 0$ at stable equilibrium \bar{x}
- ullet Interpretation of $ar{x}$ as a minimum energy state within an optimization framework
- ullet Define an energy optimization problem to determine the point of lowest energy line ℓ has failed

- $\nabla^2 \mathcal{H}(\bar{x}) \succeq 0$ at stable equilibrium \bar{x}
- Interpretation of \bar{x} as a minimum energy state within an optimization framework
- ullet Define an energy optimization problem to determine the point of lowest energy line ℓ has failed

Constrained Minimization Problem

minimize
$$\mathcal{H}(x)$$
 (14a)

s.t.
$$\Theta_{\ell}(x) = \Theta_{\ell}^{\text{max}}$$
 (14b)

- $\nabla^2 \mathcal{H}(\bar{x}) \succeq 0$ at stable equilibrium \bar{x}
- Interpretation of \bar{x} as a minimum energy state within an optimization framework
- ullet Define an energy optimization problem to determine the point of lowest energy line ℓ has failed

Constrained Minimization Problem

minimize
$$\mathcal{H}(x)$$
 (14a)

s.t.
$$\Theta_{\ell}(x) = \Theta_{\ell}^{\text{max}}$$
 (14b)

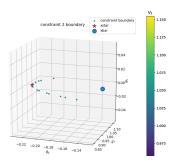
Definition (Minimizers)

$$\bar{x} := \arg\min ??$$
 (15a)

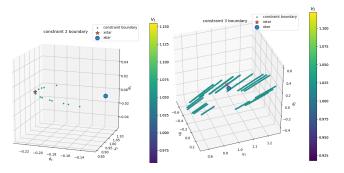
$$x^* := \operatorname{arg\,min} ??$$
 (15b)

Phase-space constraint boundary will only involve at most four variables $V_i, V_j, \theta_i, \theta_j$:

Phase-space constraint boundary will only involve at most four variables $V_i, V_j, \theta_i, \theta_j$:



Phase-space constraint boundary will only involve at most four variables $V_i, V_j, \theta_i, \theta_j$:

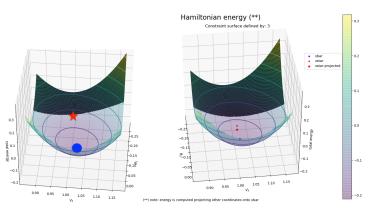


Local energy surface, left: discretized constraint surface defined by line-2, right: line-3

Energy Landscape

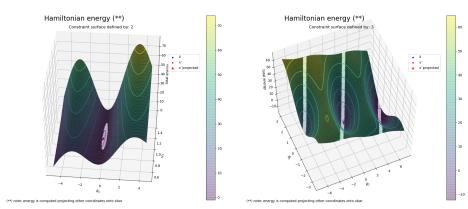
Phase-space energy surface:

Phase-space energy surface: ldt



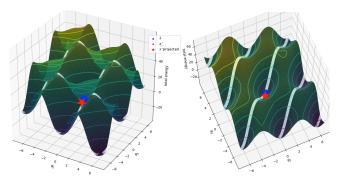
Local energy surface, left: energy and constraint surface (black) defined by line-2, right: line-3

Phase-space energy surface:



Wider energy surface, left: energy and constraint surface (black) defined by line-2, right: line-3

Phase-space energy surface:



Global energy surface, left: energy and constraint surface (black) defined by line-3, right: line-3 different view

Stochastic Perturbations [?]

• Represent load fluctuations as Gaussian perturbations

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- Perturb P_{ε}^{i} at generator buses implicitly through mismatch vectors

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- ullet Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- ullet Perturb P_g^i at generator buses implicitly through mismatch vectors
- \bullet Once a line fails, it is "removed" from the network, and topology \tilde{Y} changes, changing ${\cal H}$

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- ullet Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- ullet Perturb P_g^i at generator buses implicitly through mismatch vectors
- \bullet Once a line fails, it is "removed" from the network, and topology \tilde{Y} changes, changing ${\cal H}$

SDE Model ($\mathcal{M}_{\mathsf{SDE}}$)

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- ullet Perturb P_{ε}^{i} at generator buses implicitly through mismatch vectors
- ullet Once a line fails, it is "removed" from the network, and topology $ilde{Y}$ changes, changing \mathcal{H}

SDE Model (\mathcal{M}_{SDE})

$$dx_{\tau}^{(t)} = b^{y} \left(x_{\tau}^{(t)} \right) + \sqrt{2\tau} \sigma \left(x_{\tau}^{(t)} \right) dW^{(t)}$$

$$\tag{16}$$

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- ullet Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- ullet Perturb P_g^i at generator buses implicitly through mismatch vectors
- \bullet Once a line fails, it is "removed" from the network, and topology \tilde{Y} changes, changing ${\cal H}$

SDE Model (\mathcal{M}_{SDE})

$$dx_{\tau}^{(t)} = b^{y} \left(x_{\tau}^{(t)} \right) + \sqrt{2\tau} \, \sigma \left(x_{\tau}^{(t)} \right) \, dW^{(t)} \tag{16}$$

where:

• $b^{y}\left(x_{\tau}^{(t)}\right) := \left(J - \gamma S\right) \cdot \nabla \mathcal{H}\left(x_{\tau}^{(t)}\right)$, (17) summarizes the deterministic power grid dynamics (drift, whose mean equilibrium is parametrized by y)

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- ullet Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- ullet Perturb P_g^i at generator buses implicitly through mismatch vectors
- \bullet Once a line fails, it is "removed" from the network, and topology \tilde{Y} changes, changing ${\cal H}$

SDE Model (\mathcal{M}_{SDE})

$$dx_{\tau}^{(t)} = b^{y} \left(x_{\tau}^{(t)} \right) + \sqrt{2\tau} \, \sigma \left(x_{\tau}^{(t)} \right) dW^{(t)} \tag{16}$$

- $b^{y}\left(x_{\tau}^{(t)}\right) \coloneqq (J \gamma S) \cdot \nabla \mathcal{H}\left(x_{\tau}^{(t)}\right)$, (17) summarizes the deterministic power grid dynamics (drift, whose mean equilibrium is parametrized by y)
- $\sigma(x^{(t)}) := \sqrt{\gamma S}$, (18) summarizes the disturbances (diffusion)

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- ullet Perturb P_g^i at generator buses implicitly through mismatch vectors
- \bullet Once a line fails, it is "removed" from the network, and topology \tilde{Y} changes, changing ${\cal H}$

SDE Model (\mathcal{M}_{SDE})

$$dx_{\tau}^{(t)} = b^{y} \left(x_{\tau}^{(t)} \right) + \sqrt{2\tau} \, \sigma \left(x_{\tau}^{(t)} \right) dW^{(t)} \tag{16}$$

- $b^{y}\left(x_{\tau}^{(t)}\right) := (J \gamma S) \cdot \nabla \mathcal{H}\left(x_{\tau}^{(t)}\right)$, (17) summarizes the deterministic power grid dynamics (drift, whose mean equilibrium is parametrized by y)
- $\sigma(x^{(t)}) := \sqrt{\gamma S}$, (18) summarizes the disturbances (diffusion)
- \bullet γ represents "friction" (a damping parameter)

Stochastic Perturbations [?]

- Represent load fluctuations as Gaussian perturbations
- Perturb P_d^i and Q_d^i at load buses $i \in \mathcal{V}_L$ through mismatch vectors
- ullet Perturb P_g^i at generator buses implicitly through mismatch vectors
- \bullet Once a line fails, it is "removed" from the network, and topology \tilde{Y} changes, changing ${\cal H}$

SDE Model (\mathcal{M}_{SDE})

$$dx_{\tau}^{(t)} = b^{y} \left(x_{\tau}^{(t)} \right) + \sqrt{2\tau} \, \sigma \left(x_{\tau}^{(t)} \right) dW^{(t)} \tag{16}$$

- $b^{y}\left(x_{\tau}^{(t)}\right) \coloneqq \left(J \gamma S\right) \cdot \nabla \mathcal{H}\left(x_{\tau}^{(t)}\right)$, (17) summarizes the deterministic power grid dynamics (drift, whose mean equilibrium is parametrized by y)
- $\sigma(x^{(t)}) := \sqrt{\gamma S}$, (18) summarizes the disturbances (diffusion)
- \bullet γ represents "friction" (a damping parameter)
- ullet au represents "temperature"

SDE Model Ergodicity

17 / 1

SDE Model Ergodicity

- Energy relates spatial averages to time averages
- For $\gamma, \tau > 0$ [?], solutions to ?? are known to be ergodic with respect to the invariant measure:

$$\mu_{\tau}(x) \propto \exp\{-\mathcal{H}(x)/\tau\}$$
 (19)

SDE Model Ergodicity

- Energy relates spatial averages to time averages
- For $\gamma, \tau > 0$ [?], solutions to ?? are known to be ergodic with respect to the invariant measure:

$$\mu_{\tau}(x) \propto \exp\{-\mathcal{H}(x)/\tau\}$$
 (19)

Large-Deviation Theory (Overview)

SDE Model Ergodicity

- Energy relates spatial averages to time averages
- For $\gamma, \tau > 0$ [?], solutions to ?? are known to be ergodic with respect to the invariant measure:

$$\mu_{\tau}(x) \propto \exp\{-\mathcal{H}(x)/\tau\}$$
 (19)

Large-Deviation Theory (Overview)

ullet Low-noise setting $au\ll 1$

SDE Model Ergodicity

- Energy relates spatial averages to time averages
- For $\gamma, \tau > 0$ [?], solutions to ?? are known to be ergodic with respect to the invariant measure:

$$\mu_{\tau}(x) \propto \exp\{-\mathcal{H}(x)/\tau\}$$
 (19)

Large-Deviation Theory (Overview)

- ullet Low-noise setting $au\ll 1$
- Interested in computing "transition" times: occurrence of chemical compounds forming, or XYZ, or failure of transmission line

SDE Model Ergodicity

- Energy relates spatial averages to time averages
- For $\gamma, \tau > 0$ [?], solutions to ?? are known to be ergodic with respect to the invariant measure:

$$\mu_{\tau}(x) \propto \exp\{-\mathcal{H}(x)/\tau\}$$
 (19)

Large-Deviation Theory (Overview)

- ullet Low-noise setting $au\ll 1$
- Interested in computing "transition" times: occurrence of chemical compounds forming, or XYZ, or failure of transmission line
- Standard results for computing transition rates between metastable equilibria of reversible diffusion processes (Arrhenius): time $\propto e^{\Delta E/\tau}$

SDE Model Ergodicity

- Energy relates spatial averages to time averages
- For $\gamma, \tau > 0$ [?], solutions to ?? are known to be ergodic with respect to the invariant measure:

$$\mu_{\tau}(x) \propto \exp\{-\mathcal{H}(x)/\tau\}$$
 (19)

Large-Deviation Theory (Overview)

- ullet Low-noise setting $au\ll 1$
- Interested in computing "transition" times: occurrence of chemical compounds forming, or XYZ, or failure of transmission line
- Standard results for computing transition rates between metastable equilibria of reversible diffusion processes (Arrhenius): time $\propto e^{\Delta E/\tau}$
- Guided by saddle-points and potential energy hurdle energy-landscape

→□ → →□ → → □ → □ → ○○○

Irreversible Diffusions

Irreversible Diffusions

• Interested in approximating first passage time $T_{\partial D}^{\tau} := \inf\{t : t > 0, x_{\tau}^{(t)} \in \partial D\},$ (20)

Irreversible Diffusions

- Interested in approximating first passage time $T_{\partial D}^{\tau} := \inf\{t : t > 0, x_{\tau}^{(t)} \in \partial D\},$ (20)
- Our SDE has rank-deficient diffusion matrix and is "degenerate" but can be handled with footwork (David)

Irreversible Diffusions

- Interested in approximating first passage time $T_{\partial D}^{\tau} := \inf\{t : t > 0, x_{\tau}^{(t)} \in \partial D\}, (20)$
- Our SDE has rank-deficient diffusion matrix and is "degenerate" but can be handled with footwork (David)
- Modified potential: define a "quasi"-potential $V(\bar{x},x) := \mathcal{H}(x) \mathcal{H}(\bar{x}),$ (21)

18 / 1

Irreversible Diffusions

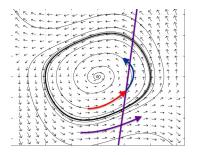
- Interested in approximating first passage time $T_{\partial D}^{\tau} := \inf\{t : t > 0, x_{\tau}^{(t)} \in \partial D\},$ (20)
- Our SDE has rank-deficient diffusion matrix and is "degenerate" but can be handled with footwork (David)
- Modified potential: define a "quasi"-potential $V(\bar{x},x) := \mathcal{H}(x) \mathcal{H}(\bar{x}),$ (21)
- Reaction rate is governed by the law with:

$$\lim_{\tau \to 0^+} \tau \mathbb{E}\left[T_{\partial D}^{\tau}\right] = \min_{x \in \partial D'} V(\bar{x}, x) \tag{22}$$

Irreversible Escape Rate Approximation

Crossing Assumptions

- Non-characteristic constraint boundary (correct "direction" of crossing)
- **②** $n(x)^{\top} S n(x) > 0$ for $x \in \partial D$ and n(x) the constraint's unit normal (noise in the direction of the constraint)



Crossing events adapted to Van der Pol system portrait³

Bruzelius, 2003

Irreversible Escape Rate Approximation

Crossing Assumptions

- Non-characteristic constraint boundary (correct "direction" of crossing)
- **3** $n(x)^{\top} S n(x) > 0$ for $x \in \partial D$ and n(x) the constraint's unit normal (noise in the direction of the constraint)

Escape Rate [?, ?]

Idea is to use a Laplace approximation around the constrained minimizer:

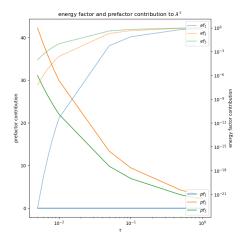
$$\lambda^{\tau} = \int_{z \in \partial D} \sqrt{\frac{\det \operatorname{Hess} \mathcal{H}(\bar{x})}{(2\pi\tau)^d}} \, e^{\left\{-\frac{V(\bar{x},z)}{\tau}\right\}} \, \langle b^{\mathsf{y}}(z), \nabla \mathsf{n}(z) \rangle \, \mathrm{d}z \tag{23}$$

$$\underset{\tau \to 0}{\approx} \gamma \left(\nabla_{\mathbf{x}} \mathcal{H}(\mathbf{x}^{\star}) \right)^{\top} S \nabla_{\mathbf{x}} \mathcal{H}(\mathbf{x}^{\star}) \sqrt{\frac{\det \mathsf{Hess} \, \mathcal{H}(\bar{\mathbf{x}})}{2\pi \tau B}} \, \exp \left\{ -\frac{\mathcal{H}(\mathbf{x}^{\star}) - \mathcal{H}(\bar{\mathbf{x}})}{\tau} \right\} \tag{24}$$

where B captures curvature and volume properties at x^*

4 D > 4 D > 4 E > 4 E > E 990

Contribution of Prefactor



Computation of λ^{τ} for various temperatures; split into prefactor (polynomial) and energy factor (exponential)

Integration

21 / 1

Integration

Integration

- Initialize $x^{(0)} = \bar{x}$ from an OPF solution (\bar{x}, \bar{y})
- ② Integrate SDE (??) one step and monitor Θ_ℓ for particular line ℓ

Integration

- Initialize $x^{(0)} = \bar{x}$ from an OPF solution (\bar{x}, \bar{y})
- ② Integrate SDE (??) one step and monitor Θ_{ℓ} for particular line ℓ
- **3** If $\Theta_{\ell} \geq \Theta_{\ell}^{\text{max}}$, then record time, otherwise return to (2)

Integration

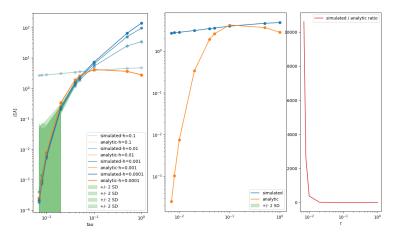
- Initialize $x^{(0)} = \bar{x}$ from an OPF solution (\bar{x}, \bar{y})
- ② Integrate SDE (??) one step and monitor Θ_{ℓ} for particular line ℓ
- **3** If $\Theta_{\ell} \geq \Theta_{\ell}^{\text{max}}$, then record time, otherwise return to (2)



left: 3bus structure from [?]

Integration Verification for Failure Rate

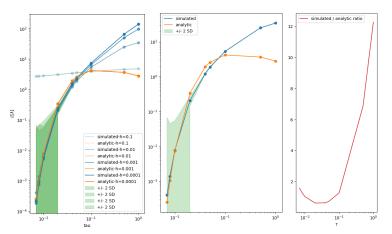
Setting integration parameters (step-size):



Inverse of average failure time (1/sec) over 5,000 failures (25 experiments of 200 failures) for 3bus model line 2 at different step sizes; as step-size decreases, we observe low-noise asymptotic agreement between simulated and analytic approximations of $\mathbb{E}\left[\lambda\right]$

Integration Verification for Failure Rate

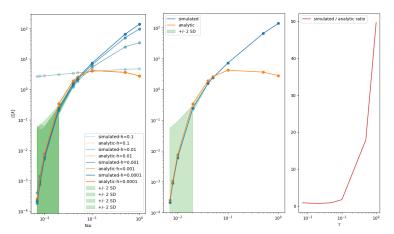
Setting integration parameters (step-size):



Inverse of average failure time (1/sec) over 5,000 failures (25 experiments of 200 failures) for 3bus model line 2 at different step sizes; as step-size decreases, we observe low-noise asymptotic agreement between simulated and analytic approximations of $\mathbb{E}\left[\lambda\right]$

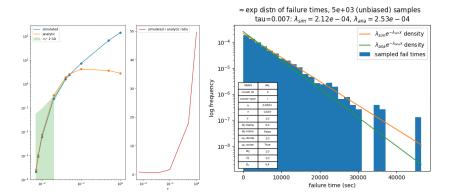
Integration Verification for Failure Rate

Setting integration parameters (step-size):



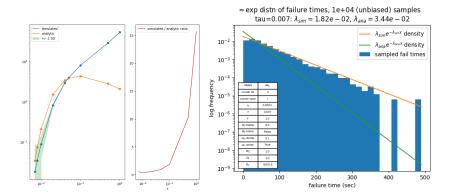
Inverse of average failure time (1/sec) over 5,000 failures (25 experiments of 200 failures) for 3bus model line 2 at different step sizes; as step-size decreases, we observe low-noise asymptotic agreement between simulated and analytic approximations of $\mathbb{E}\left[\lambda\right]$

Failures Across Lines (line-2)



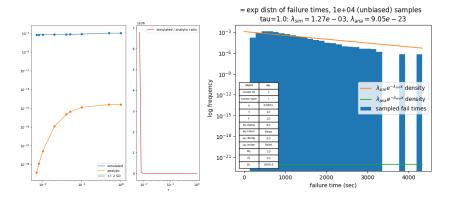
left: inverse of average failure time (1/sec) over 5,000 failures (25 experiments of 200 failures), *right*: approximate exponential distribution of failure times

Failures Across Lines (line-3)

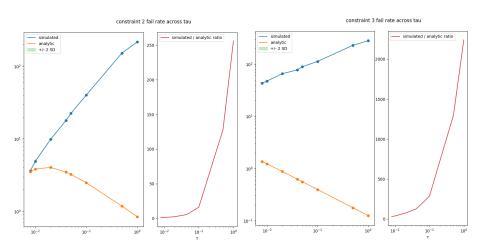


left: inverse of average failure time (1/sec) over 10,000 failures (50 experiments of 200 failures), right: approximate exponential distribution of failure times

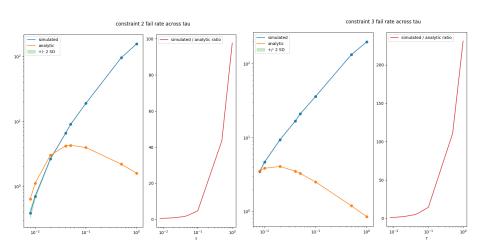
Failures Across Lines (line-1)



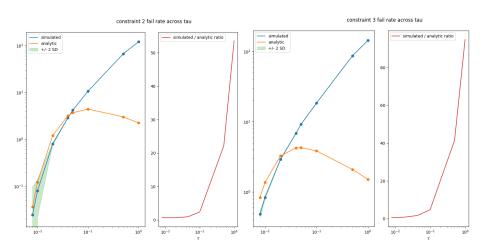
note: λ is calculated excluding the prefactor. *left*: inverse of average failure time (1/sec) over 10,000 failures (50 experiments of 200 failures), *right*: approximate exponential distribution of failure times



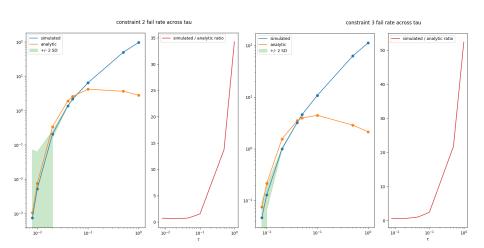
 $\textit{left}: \ \mathsf{line-2} \ \mathsf{failure} \ \mathsf{rate} \ \mathsf{across} \ \mathsf{line} \ \mathsf{limit} \ \Theta_3^{\mathsf{max}}, \ \textit{right}: \ \mathsf{line-3} \ \mathsf{failure} \ \mathsf{rate} \ \mathsf{across} \ \mathsf{line} \ \mathsf{limit} \ \Theta_3^{\mathsf{max}}$



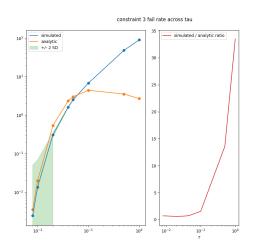
 $\textit{left}: \ \mathsf{line-2} \ \mathsf{failure} \ \mathsf{rate} \ \mathsf{across} \ \mathsf{line} \ \mathsf{limit} \ \Theta_3^{\mathsf{max}}, \ \textit{right}: \ \mathsf{line-3} \ \mathsf{failure} \ \mathsf{rate} \ \mathsf{across} \ \mathsf{line} \ \mathsf{limit} \ \Theta_3^{\mathsf{max}}$



left: line-2 failure rate across line limit Θ_2^{max} , *right*: line-3 failure rate across line limit Θ_3^{max}



 $\textit{left}: \ \mathsf{line-2} \ \mathsf{failure} \ \mathsf{rate} \ \mathsf{across} \ \mathsf{line} \ \mathsf{limit} \ \Theta_3^{\mathsf{max}}, \ \textit{right}: \ \mathsf{line-3} \ \mathsf{failure} \ \mathsf{rate} \ \mathsf{across} \ \mathsf{line} \ \mathsf{limit} \ \Theta_3^{\mathsf{max}}$



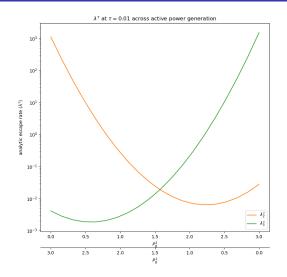
left: line-2 failure rate across line limit Θ_2^{max} , *right*: line-3 failure rate across line limit Θ_3^{max}

Animations

animations

Validation

Sensitivity to Dispatch



Line-2 and line-3 failure rate versus active power generatrion $P_{\rm g}^2$

Takeaways

29 / 1

Takeaways

• Observe bias for temperatures "not sufficiently low"

Takeaways

- Observe bias for temperatures "not sufficiently low"
- "Sufficiently low" is relative to boundary

Takeaways

- Observe bias for temperatures "not sufficiently low"
- "Sufficiently low" is relative to boundary
- \bullet Heuristic measure is when exit points cluster around $x^{\star},$ not just good agreement between analytic and simulated λ

Takeaways

- Observe bias for temperatures "not sufficiently low"
- "Sufficiently low" is relative to boundary
- ullet Heuristic measure is when exit points cluster around x^* , not just good agreement between analytic and simulated λ
- Prefactor correction is important; escape point is not a true saddle point

Conclusions

Conclusions

 One step toward designing an operating point with stochastic security with load and generator perturbations

Conclusions

- One step toward designing an operating point with stochastic security with load and generator perturbations
- \bullet Difficult to know when τ is low enough; can estimate τ from data but then might need to tune γ for real network

Conclusions

- One step toward designing an operating point with stochastic security with load and generator perturbations
- \bullet Difficult to know when τ is low enough; can estimate τ from data but then might need to tune γ for real network

Next

Conclusions

- One step toward designing an operating point with stochastic security with load and generator perturbations
- \bullet Difficult to know when τ is low enough; can estimate τ from data but then might need to tune γ for real network

Next

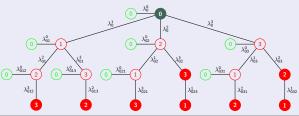
• Larger model (working on simulations and validation for 30-bus model)

Conclusions

- One step toward designing an operating point with stochastic security with load and generator perturbations
- \bullet Difficult to know when τ is low enough; can estimate τ from data but then might need to tune γ for real network

Next

- Larger model (working on simulations and validation for 30-bus model)
- Failure sequences (parallelize x^* calculation) and build Markov network



30 / 1

References I