Cascade-constrained ACOPF

Anirudh Subramanyam, Jake Roth, and Mihai Anitescu

August 26, 2020

Outline

[Introduction](#page-2-0)

[Probability model](#page-20-0)

[Optimization model](#page-34-0)

[Numerical experiments](#page-51-0)

Introduction

[Introduction](#page-2-0)

[Probability model](#page-20-0)

[Optimization model](#page-34-0)

[Numerical experiments](#page-51-0)

Motivation

Scheduling electrical generation

- \triangleright Critical for safe planning and operation of the grid
- \blacktriangleright Growing complexity of the grid makes this problem more pronounced

Challenges

- \triangleright Set points can be susceptible to failure in ways that are not well understood
- \triangleright Component outages don't propagate locally in grid topology
- \triangleright Need to resolve complex interactions amongst components (dynamics, ACPF)

Cascade models

Cascade models

 \triangleright Complex networks: ignore physics, focus on topology

Cascade models

- \triangleright Complex networks: ignore physics, focus on topology
- \triangleright Quasi-steady state or dynamics-based: physics $+$ sampling

Cascade models

- \triangleright Complex networks: ignore physics, focus on topology
- \triangleright Quasi-steady state or dynamics-based: physics $+$ sampling
- \triangleright Data-driven: historical cascade data

Cascade models

- \triangleright Complex networks: ignore physics, focus on topology
- \triangleright Quasi-steady state or dynamics-based: physics $+$ sampling
- \triangleright Data-driven: historical cascade data

Difficulty: Hard to incorporate in optimization; not real time (simulations $+$ historical data might only be able to influence $\mathsf{long-term}$ decision making)

Cascade models

- \triangleright Complex networks: ignore physics, focus on topology
- \triangleright Quasi-steady state or dynamics-based: physics $+$ sampling
- \triangleright Data-driven: historical cascade data

Difficulty: Hard to incorporate in optimization; not real time (simulations $+$ historical data might only be able to influence $\mathsf{long-term}$ decision making)

Cascade mitigation

 \triangleright Protective (before a contingency): ensure grid security against a list of particular contingencies $(N - 1, N - k)$

Cascade models

- \triangleright Complex networks: ignore physics, focus on topology
- \triangleright Quasi-steady state or dynamics-based: physics $+$ sampling
- \triangleright Data-driven: historical cascade data

Difficulty: Hard to incorporate in optimization; not real time (simulations $+$ historical data might only be able to influence $\mathsf{long-term}$ decision making)

- \triangleright Protective (before a contingency): ensure grid security against a list of particular contingencies $(N - 1, N - k)$
- \triangleright Corrective (after a contingency): generation re-dispatch, load shed, protective islanding

Challenges

Challenges

 \triangleright Protective methods: combinatorial complexity, list of contingencies defined a priori

Challenges

- \triangleright Protective methods: combinatorial complexity, list of contingencies defined a priori
- \blacktriangleright Lack a direct functional relationship between the grid's operating state and "risk"

$$
\mathcal{R} \colon y \to \mathcal{R}(y)
$$

Challenges

- \triangleright Protective methods: combinatorial complexity, list of contingencies defined a priori
- \blacktriangleright Lack a direct functional relationship between the grid's operating state and "risk"

$$
\mathcal{R}: y \to \mathcal{R}(y)
$$

Thermodynamics-inspired protective model

- Explicit surrogate for cascade risk R based on the operating state's "potential energy" difference
- Incorporate R into ACOPF and influence the energy surface by the changing generation schedule

Thermodynamics-inspired protective model

- Explicit surrogate for cascade risk R based on the operating state's "potential energy" difference
- Incorporate R into ACOPF and influence the energy surface by the changing generation schedule

Thermodynamics-inspired protective model

- Explicit surrogate for cascade risk R based on the operating state's "potential energy" difference
- Incorporate $\mathcal R$ into ACOPF and influence the energy surface by the changing generation schedule

$$
horizon (similar to N-1)
$$

[Cascade-constrained ACOPF](#page-0-0) **Introduction Introduction Introduction 1.1 Introduction 1.1**

Thermodynamics-inspired protective model

- Explicit surrogate for cascade risk R based on the operating state's "potential energy" difference
- Incorporate $\mathcal R$ into ACOPF and influence the energy surface by the changing generation schedule

Question: how effective is controlling the risk of single-component failure for controlling cascade risk? [Cascade-constrained ACOPF](#page-0-0) **Introduction Introduction Introduction 1.1 Introduction 1.1**

Proposed approach (cont'd)

Roadmap:

- 1. "Lower level" state space, model, and optimization (Probability model section)
- 2. "Upper level" state space, model, optimization, and merging of lower level model (Optimization model section)
- 3. Numerical experiments using "KMC" a related cascade tool to simulate cascades based on a similar notion of system "energy" (Numerical experiments section)

Probability model

[Introduction](#page-2-0)

[Probability model](#page-20-0)

[Optimization model](#page-34-0)

[Numerical experiments](#page-51-0)

Model

- $\mathcal{N} = \{1, 2, ..., n_b\} = \mathcal{N}' \cup \mathcal{G}$ denotes the set of non-generator and generator buses and
- \triangleright $\mathcal{L} \subset \mathcal{N} \times \mathcal{N}$ denotes the set of transmission lines
- ► System state space $\subseteq \mathbb{R}^{2n_b}$ where each bus i has
	- ► two "unknowns": V_i and θ_i
	- ► two equations: $p_{net,i} = \hat{p}_{net,i}(V, \theta)$ and $q_{net,i} = \hat{q}_{net,i}(V, \theta)$

$$
\blacktriangleright \ p_{net,i} := p_{d,i} - p_{g,i} \text{ and } q_{net,i} := q_{d,i} - q_{g,i}
$$

Assumptions

- \blacktriangleright *V_i* and $p_{q,i}$ are controllable if *i* is a generator
- \blacktriangleright $p_{d,i}$ and $q_{d,i}$ are known if *i* is a non-generator
- \blacktriangleright Lossless transmission lines $+$ ACPF equations
- \blacktriangleright Balance eq. $\sum_i p_{net,i} = 0$ and a "slack" bus at index $i = \sigma$

[Cascade-constrained ACOPF](#page-0-0) **Probability model** [Probability model](#page-20-0) 9 / 32

 \triangleright State space: collect V_i at non-generator buses and θ_i at non-slack buses in the state vector

$$
x = (\{V_i\}_{i \in \mathcal{N}}, \{\theta_i\}_{i \in \mathcal{N}\setminus\{\sigma\}}) \in \mathbb{R}^d, \quad d = |\mathcal{N}'| + |\mathcal{N}| - 1 \qquad (1)
$$

 \triangleright State space: collect V_i at non-generator buses and θ_i at non-slack buses in the state vector

$$
x = (\{V_i\}_{i \in \mathcal{N}}, \{\theta_i\}_{i \in \mathcal{N}\setminus\{\sigma\}}) \in \mathbb{R}^d, \quad d = |\mathcal{N}'| + |\mathcal{N}| - 1 \qquad (1)
$$

 \triangleright Parameters: collect the remaining voltages and net active and reactive powers

$$
y = (\{V_i\}_{i \in \mathcal{N} \setminus \mathcal{N}'} , \theta_{\sigma}, p_g, q_g) \in \mathbb{R}^m, \quad m = 4n_b - d \tag{2}
$$

 \triangleright State space: collect V_i at non-generator buses and θ_i at non-slack buses in the state vector

$$
x = (\{V_i\}_{i \in \mathcal{N}'}, \{\theta_i\}_{i \in \mathcal{N}\setminus\{\sigma\}}) \in \mathbb{R}^d, \quad d = |\mathcal{N}'| + |\mathcal{N}| - 1 \qquad (1)
$$

 \triangleright Parameters: collect the remaining voltages and net active and reactive powers

$$
y = (\{V_i\}_{i \in \mathcal{N} \setminus \mathcal{N}'} , \theta_{\sigma}, p_g, q_g) \in \mathbb{R}^m, \quad m = 4n_b - d \tag{2}
$$

 \triangleright By setting *y*, we can determine a grid state *x* via the power flow equations

 \triangleright State space: collect V_i at non-generator buses and θ_i at non-slack buses in the state vector

$$
x = (\{V_i\}_{i \in \mathcal{N}'}, \{\theta_i\}_{i \in \mathcal{N}\setminus\{\sigma\}}) \in \mathbb{R}^d, \quad d = |\mathcal{N}'| + |\mathcal{N}| - 1 \qquad (1)
$$

 \triangleright Parameters: collect the remaining voltages and net active and reactive powers

$$
y = (\{V_i\}_{i \in \mathcal{N} \setminus \mathcal{N}'} , \theta_{\sigma}, p_g, q_g) \in \mathbb{R}^m, \quad m = 4n_b - d \tag{2}
$$

- \triangleright By setting *y*, we can determine a grid state *x* via the power flow equations
- \blacktriangleright How x changes over time is described by an SDE

$$
\mathrm{d}x_t^\tau = (J - S)\nabla_x \mathcal{H}(x_t^\tau, y)\mathrm{d}t + \sqrt{2\tau S} \mathrm{d}W_t \tag{3}
$$

for an "energy-function" $\mathcal{H}:\mathbb{R}^d\to\mathbb{R}$, system quantities J,S , and Brownian motions d*W^t* with variance *τ*

 \triangleright State space: collect V_i at non-generator buses and θ_i at non-slack buses in the state vector

$$
x = (\{V_i\}_{i \in \mathcal{N}}, \{\theta_i\}_{i \in \mathcal{N}\setminus\{\sigma\}}) \in \mathbb{R}^d, \quad d = |\mathcal{N}'| + |\mathcal{N}| - 1 \qquad (1)
$$

 \triangleright Parameters: collect the remaining voltages and net active and reactive powers

$$
y = (\{V_i\}_{i \in \mathcal{N} \setminus \mathcal{N}'} , \theta_{\sigma}, p_g, q_g) \in \mathbb{R}^m, \quad m = 4n_b - d \tag{2}
$$

- \triangleright By setting *y*, we can determine a grid state *x* via the power flow equations
- \blacktriangleright How x changes over time is described by an SDE

$$
\mathrm{d}x_t^\tau = (J - S)\nabla_x \mathcal{H}(x_t^\tau, y)\mathrm{d}t + \sqrt{2\tau S} \mathrm{d}W_t \tag{3}
$$

for an "energy-function" $\mathcal{H}:\mathbb{R}^d\to\mathbb{R}$, system quantities J,S , and Brownian motions d*W^t* with variance *τ*

 \blacktriangleright Energy function (first integral of dynamics)

$$
\mathcal{H}(x,y) \coloneqq \frac{1}{2}(V \circ e^{i\theta})^* Y (V \circ e^{i\theta}) + p_{net}^\top \theta + q_{net}^\top \log(V) \qquad \text{(4)}
$$

Failure model

- \blacktriangleright Any local energy minimizer $\bar{x}(y) := \arg \min_{x \in \mathbb{R}^d} \mathcal{H}(x, y)$ solves the power flow equations and can be taken as a dispatch point
- \blacktriangleright Query the system for the first time that an observable $(\Theta(x^\tau_t, y))$ of the system exceeds a threshold (Θ^{\max})
- \blacktriangleright Phrase as a mean first-passage time problem

 $T^{\tau}_{\partial D} \coloneqq \inf\{t > 0 : \Theta(x^{\tau}_t, y) \geq \Theta^{\max}\}$

Failure model (cont'd)

We can consider $\Theta(x, y)$ to denote various quantities of interest, for example...

- ► ...under-voltage violation: $\Theta(x,y) = -V_i, \ \Theta_i^{\max} = -V_i^{\text{trip}}$
- \blacktriangleright ...exceedance of apparent power flow rating: $\Theta_l(x, y) = (s_{p,l})^2 + (s_{q,l})^2, \ \ \Theta_l^{\max} = (s_l^{\text{trip}})^2$
- \blacktriangleright ...exceedance of current flow (I) rating for line $l = (i, j) : \Theta(x, y) \coloneqq$ $|B_{i,j}|^2 (V_i^2 + V_j^2 - 2V_iV_j \cos(\theta_i - \theta_j))$, $\Theta_l^{\max} = (I_l^{\text{trip}})^2$

And each describe a safety region *D*(*y*), failure boundary *∂Dl*(*y*), and failure region $D_l^{\complement}(y) \coloneqq \mathbb{R}^d \backslash D_l(y)$ for

$$
D_l(y) := \{x \in \mathbb{R}^d : \Theta_l(x, y) < \Theta_l^{\max}\}
$$
\n
$$
\partial D_l(y) := \{x \in \mathbb{R}^d : \Theta_l(x, y) = \Theta_l^{\max}\}.
$$

Computing $\mathcal{R}(y)$ in closed form

^I Specifies distribution of failure times *T τ ∂D* ∼ Exp(*λ*) governed by f ailure rate parameter $\lambda = 1/\mathbb{E}[T^{\tau}_{\partial D}]$

Computing $\mathcal{R}(y)$ in closed form

- ^I Specifies distribution of failure times *T τ ∂D* ∼ Exp(*λ*) governed by f ailure rate parameter $\lambda = 1/\mathbb{E}[T^{\tau}_{\partial D}]$
- ► Relates $\mathbb{E}[T_{\partial D}^{\tau}]$ to an explicitly computable function of the state space

$$
\lim_{\tau \to 0} \tau \log \mathbb{E} T_{\partial D_l}^{\tau} = \min_{x \in \partial D_l} \mathcal{H}(\bar{x}(y), y) - \mathcal{H}(x^*(y), y), \tag{5}
$$

Computing $\mathcal{R}(y)$ in closed form

- ^I Specifies distribution of failure times *T τ ∂D* ∼ Exp(*λ*) governed by f ailure rate parameter $\lambda = 1/\mathbb{E}[T^{\tau}_{\partial D}]$
- ► Relates $\mathbb{E}[T_{\partial D}^{\tau}]$ to an explicitly computable function of the state space

$$
\lim_{\tau \to 0} \tau \log \mathbb{E} T_{\partial D_l}^{\tau} = \min_{x \in \partial D_l} \mathcal{H}(\bar{x}(y), y) - \mathcal{H}(x^*(y), y), \tag{5}
$$

 \triangleright Can compute subexponential correction to λ , by a Laplace approximation at the "most-likely" failure point

$$
x_l^*(y) := \underset{x \in \mathbb{R}^d}{\arg \min} \left\{ \mathcal{H}(x, y) : \Theta_l(x, y) = \Theta_l^{\max} \right\},\tag{6}
$$

Failure rate for line *l*

Failure rate: Computation [determinants](#page-49-0) $\lambda_l^{\tau}(y) \underset{\tau \to 0}{\sim} \mathsf{pf}_l(y) \times \mathsf{ef}_l(y)$ (7) $\mathsf{p}\mathsf{f}_{l}(y) \coloneqq \nabla^{\top}\mathcal{H}_{l}^{\star}(y)S\nabla\mathcal{H}_{l}^{\star}(y)$ $\int \det \nabla_{xx}^2 \mathcal{H}(\bar{x},y)$ $2\pi\tau B_l^*(y)$ (8) $\mathsf{ef}_{l}(y) \coloneqq \exp \left[-\frac{\mathcal{H}(x_{l}^{\star},y) - \mathcal{H}(\bar{x},y)}{\sigma}\right]$ *τ* 1 *,* (9)

where $\nabla \mathcal{H}_{l}^{\star}(y)$ and $B_{l}^{\star}(y)$ (a factor accounting for the curvature of $\partial D_l(y)$ in the vicinity of x^\star) are given by:

$$
\nabla \mathcal{H}_l^{\star}(y) \coloneqq \nabla_x \mathcal{H}(x_l^{\star}, y) \tag{10}
$$

$$
B_l^{\star}(y) \coloneqq \nabla^{\top} \mathcal{H}_l^{\star}(y) \operatorname{adj} (L_l(y)) \, \nabla \mathcal{H}^{\star}(y) \tag{11}
$$

$$
L_l(y) \coloneqq \nabla_{xx}^2 \mathcal{H}(x_l^*, y) - \mu_l \nabla_{xx}^2 \Theta_l(x_l^*, y), \tag{12}
$$

and $\mu_l \in \mathbb{R}$ is the Lagrange multiplier in the constraint defining x^\star

Risk for line *l*

Risk:

$$
\mathcal{R}(y) \coloneqq \mathbb{P}(T_{\partial D_l}^{\tau}(y) \le t_H) = 1 - \exp\left[-\lambda_l^{\tau}(y)t_H\right] \tag{13}
$$

for time horizon of interest *t^H*

Optimization model

[Introduction](#page-2-0)

[Probability model](#page-20-0)

[Optimization model](#page-34-0)

[Numerical experiments](#page-51-0)

Conceptual outline

- \triangleright Each *y* (implicitly) determines the values of *x* through the power flow equations
- Introduce "lower level" optimization variables x to make this relationship explicit
- \triangleright Determine the best vector *y* subject to constraining the probability of line failure, shedding load if required

Optimization formulation

We begin with traditional ACOPF

$$
\min_{x,y} \qquad c(y) = \sum_{k \in \mathcal{G}} c_k(p_{g,k}) \tag{14a}
$$

$$
\text{s.t.} \qquad V_i^{\min} \le V_i \le V_i^{\max} \ \forall i \in \mathcal{G} \tag{14b}
$$

$$
V_i^{\min} \le V_i \le V_i^{\max} \ \forall i \in \mathcal{N} \backslash \mathcal{G}
$$
 (14c)

$$
\theta_i^{\min} \le \theta_i \le \theta_i^{\max} \ \forall i \in \mathcal{N} \tag{14d}
$$

$$
\Theta(x, y) \le (I^{\max})^2 \ \forall l \in \mathcal{L} \tag{14e}
$$

Optimization formulation

We begin with traditional ACOPF

$$
\min_{x,y} \qquad c(y) = \sum_{k \in \mathcal{G}} c_k(p_{g,k}) \tag{14a}
$$

$$
\text{s.t.} \qquad V_i^{\min} \le V_i \le V_i^{\max} \ \forall i \in \mathcal{G} \tag{14b}
$$

$$
V_i^{\min} \le V_i \le V_i^{\max} \ \forall i \in \mathcal{N} \backslash \mathcal{G}
$$
 (14c)

$$
\theta_i^{\min} \le \theta_i \le \theta_i^{\max} \ \forall i \in \mathcal{N} \tag{14d}
$$

$$
\Theta(x, y) \le (I^{\max})^2 \ \forall l \in \mathcal{L} \tag{14e}
$$

Next specify a time horizon t_H and risk threshold ϵ^lim to constrain the risk for each line $l \in \mathcal{L}$

$$
\mathcal{R}(y, x(y)) = \mathbb{P}(T_{\partial D_l}^{\tau}(y) \le t_H) = 1 - \exp\left[-\lambda_l^{\tau}(y)t_H\right] \le \epsilon^{\lim} \tag{15}
$$

Note that the constraint in eq. [\(15\)](#page-36-0) is a safe approximation for limiting the probability of

Note that the constraint in eq. [\(15\)](#page-36-0) is a safe approximation for limiting the probability of

1. Non-independent line failures (use Bonferroni to set $\epsilon^{\rm lim}$

appropriately to limit the probability that at least line fails in t_H)

Note that the constraint in eq. [\(15\)](#page-36-0) is a safe approximation for limiting the probability of

- 1. Non-independent line failures (use Bonferroni to set $\epsilon^{\rm lim}$ appropriately to limit the probability that at least line fails in t_H)
- 2. Cascading failures over the time horizon *t^H* (limiting the probability that a single line *l* failure will occur within t_H also limits the probability of sequences of line failures beginning with line *l*)

Note that the constraint in eq. [\(15\)](#page-36-0) is a safe approximation for limiting the probability of

- 1. Non-independent line failures (use Bonferroni to set $\epsilon^{\rm lim}$ appropriately to limit the probability that at least line fails in t_H)
- 2. Cascading failures over the time horizon t_H (limiting the probability that a single line *l* failure will occur within t_H also limits the probability of sequences of line failures beginning with line *l*)

In principle, we can also explicitly limit the probability of sequences of line failures by considering increasingly nested problems...but leads to same combinatorial issues as in *N* − *k*

Computation

Challenges

- 1. Solving a nested optimization problem for $x^*(y)$
- 2. Encoding constraints with determinants of large matrices (recall the failure rate [prefactor](#page-32-0) $\left($ prefactor $\right)$

Efficient computation steps

- 1. Reformulate the R constraint(s)
- 2. Incorporate the nested $x^*(y)$ problem into the top level
- 3. Address high-dimensional determinants
- 4. Implement practical considerations

Constraint reformulation (step 1)

1. Low rank factorization of Θ*^l* for fixed line *l*:

$$
\nabla_{x,x}^2 \Theta_l(x,y) = Q_l(x,y) C_l(x,y) Q_l^{\top}(x,y)
$$

where $Q_l(x,y) \in \mathbb{R}^{d \times r}$ (and $r \ll m$) and $C_l(x,y) \in \mathbb{R}^{r \times r}$ diagonal 2. Taylor approximation:

$$
\mathcal{H}(x_l^{\star}, y) \approx \mathcal{H}(\bar{x}, y) + \nabla_x^{\top} \mathcal{H}(\bar{x}, y)(x_l^{\star} - \bar{x}) \n+ \frac{1}{2} (x_l^{\star} - \bar{x})^{\top} \nabla_{xx}^2 \mathcal{H}(\bar{x}, y)(x_l^{\star} - \bar{x})
$$

Constraint reformulation (step 1)

1. Low rank factorization of Θ*^l* for fixed line *l*:

$$
\nabla_{x,x}^2 \Theta_l(x,y) = Q_l(x,y) C_l(x,y) Q_l^{\top}(x,y)
$$

where $Q_l(x,y) \in \mathbb{R}^{d \times r}$ (and $r \ll m$) and $C_l(x,y) \in \mathbb{R}^{r \times r}$ diagonal 2. Taylor approximation:

$$
\mathcal{H}(x_l^{\star}, y) \approx \mathcal{H}(\bar{x}, y) + \nabla_x^{\top} \mathcal{H}(\bar{x}, y)(x_l^{\star} - \bar{x}) \n+ \frac{1}{2} (x_l^{\star} - \bar{x})^{\top} \nabla_{xx}^2 \mathcal{H}(\bar{x}, y)(x_l^{\star} - \bar{x}) \n= \mathcal{H}(\bar{x}, y) + \frac{1}{2} (x_l^{\star} - \bar{x})^{\top} \nabla_{xx}^2 \mathcal{H}(\bar{x}, y)(x_l^{\star} - \bar{x})
$$

 \blacktriangleright Suppose that:

- 1. $\nabla_{xx}^2 \mathcal{H}(\bar{x},y) \succ 0$, and
- 2. the Taylor approximation [\(16\)](#page-43-0) is applicable

\blacktriangleright Suppose that:

- 1. $\nabla_{xx}^2 \mathcal{H}(\bar{x},y) \succ 0$, and
- 2. the Taylor approximation [\(16\)](#page-43-0) is applicable
- \blacktriangleright Then we can incorporate the definition of $x^{\star}(y)$ into the top level problem by encoding
	- 1. the KKT conditions (stationarity, feasibility, slackness (for free)) as additional constraints
	- 2. a spectral radius condition on a particular matrix as an additional constraint

\blacktriangleright Suppose that:

- 1. $\nabla_{xx}^2 \mathcal{H}(\bar{x},y) \succ 0$, and
- 2. the Taylor approximation [\(16\)](#page-43-0) is applicable
- \blacktriangleright Then we can incorporate the definition of $x^{\star}(y)$ into the top level problem by encoding
	- 1. the KKT conditions (stationarity, feasibility, slackness (for free)) as additional constraints
	- 2. a spectral radius condition on a particular matrix as an additional constraint

Specifically...

$$
\nabla_{xx}^2 \mathcal{H}(\bar{x}, y)(x_l^* - \bar{x}) = \mu_l \nabla_x \Theta_l(x_l^*, y)
$$
(16)

$$
\Theta_l(x_l^*, y) = \Theta_l^{\max} \tag{17}
$$

$$
\mu_l \,\rho\,(A_l) < 1,\tag{18}
$$

where
$$
A_l \coloneqq D_l(x_l^\star, y) Q_l^\top(x_l^\star, y) [\nabla_{xx}^2 \mathcal{H}(\bar{x}, y)]^{-1} Q_l(x_l^\star, y)
$$
 is a $r_l \times r_l$ matrix.

High-dimensional determinants (step 3)

Compute [prefactor](#page-32-0) determinants (prefactor) using

- 1. the Taylor approximation of the energy H
- 2. the low-rank factorization of the constraint Θ

This can be done by introducing auxiliary optimization variables via a matrix relationship (see Appendix)

Takeaway: able to reduce failure rate sub-expressions to (complicated) closed-form expressions involving 3×3 matrices

Practical considerations (step 4)

To address warm-starts and infeasibility, the solution procedure is split into two phases:

- 1. load-shed determination
- 2. add R constraints and candidate solve

Numerical experiments

[Introduction](#page-2-0)

[Probability model](#page-20-0)

[Optimization model](#page-34-0)

[Numerical experiments](#page-51-0)

Figure: Validation: KKT-approximated failure rates versus true failure rates for IEEE 118bus model with PGLib line limits at traditional ACOPF set-point

Cascade prevention experiment procedure

- ► Determine a set-point y by enforcing $\mathcal{R} \leq \epsilon^\mathrm{lim}$ for various ϵ^lim
- \triangleright Simulate sequences of line failures from the resulting set point using KMC
- \triangleright Record time and load-still-served at each failure
- \blacktriangleright Repeat simulations across a range of parameters settings $(\tau,\Theta^{\max},\Theta^{\max})$ and *pd, q^d* load levels); below we show results over load level, known to be an important determinant of cascade risk

Shortcomings

- \triangleright Cascades and failure rates are highly sensitive to τ ; cascades are induced by using an artificially high temperature
- \triangleright PGLib line limits are very high, leading to very low initial failure rates; we are in the process of considering an RTS96 case with limits that may reflect reality better

Appendix

- Intermediate terms involved in R are computable in closed form except for A_l which appears in the definition of $W_l \coloneqq I - \mu_l A_l$
- ► Skirt this issue by introducing $Z_l \in \mathbb{R}^{d \times r_l}$ as follows:

$$
\nabla_{xx}^2 \mathcal{H}(x, y) \cdot Z_l = Q_l(x_l^*, y), \tag{19}
$$

and then setting $A_l = D_l(x_l^*, y) Q_l^{\top}(x_l^*, y) Z_l$

 \blacktriangleright An alternative is to introduce explicit decision variables Z_l in the ACOPF formulation, along with its definition [\(19\)](#page-61-0) as additional constraints. We implemented this alternative since it allows the complete rate constraint, including all of its intermediate expressions, to be computed analytically.