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Motivation

Scheduling electrical
generation

I Critical for safe planning
and operation of the grid

I Growing complexity of the
grid makes this problem
more pronounced

Challenges
I Set points can be susceptible to failure

in ways that are not well understood
I Component outages don’t propagate

locally in grid topology
I Need to resolve complex interactions

amongst components (dynamics,
ACPF)
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Existing approaches

Cascade models

I Complex networks: ignore physics, focus on topology
I Quasi-steady state or dynamics-based: physics + sampling
I Data-driven: historical cascade data

Difficulty: Hard to incorporate in optimization; not real time
(simulations + historical data might only be able to influence long-term
decision making)

Cascade mitigation

I Protective (before a contingency): ensure grid security against a list
of particular contingencies (N − 1, N − k)

I Corrective (after a contingency): generation re-dispatch, load shed,
protective islanding
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Existing approaches (cont’d)

Challenges

I Protective methods: combinatorial complexity, list of contingencies
defined a priori

I Lack a direct functional relationship between the grid’s operating
state and “risk”

R: y → R(y)
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Proposed approach
Thermodynamics-inspired protective model

I Explicit surrogate for cascade risk R based on the operating state’s
“potential energy” difference

I Incorporate R into ACOPF and influence the energy surface by the
changing generation schedule

Figure: Energy landscape schematic.
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Figure: Energy landscape schematic.

Goal: limit the probability of single-component failures within a control
horizon (similar to N − 1)
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Thermodynamics-inspired protective model

I Explicit surrogate for cascade risk R based on the operating state’s
“potential energy” difference

I Incorporate R into ACOPF and influence the energy surface by the
changing generation schedule

Figure: Energy landscape schematic.

Question: how effective is controlling the risk of single-component
failure for controlling cascade risk?
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Proposed approach (cont’d)

Roadmap:
1. “Lower level” state space, model, and optimization (Probability

model section)
2. “Upper level” state space, model, optimization, and merging of

lower level model (Optimization model section)
3. Numerical experiments using “KMC” a related cascade tool to

simulate cascades based on a similar notion of system “energy”
(Numerical experiments section)
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Power transmission network model
Model

I N = {1, 2, . . . nb} = N ′ ∪ G denotes the set of non-generator and
generator buses and

I L ⊆ N ×N denotes the set of transmission lines
I System state space ⊆ R2nb where each bus i has

I two “unknowns”: Vi and θi

I two equations: pnet,i = p̂net,i(V, θ) and qnet,i = q̂net,i(V, θ)
I pnet,i := pd,i − pg,i and qnet,i := qd,i − qg,i

Figure: IEEE 30-bus system

Assumptions
I Vi and pg,i are controllable if i

is a generator
I pd,i and qd,i are known if i is a

non-generator
I Lossless transmission lines +

ACPF equations
I Balance eq.

∑
i pnet,i = 0 and

a “slack” bus at index i = σ
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Power transmission network model
I State space: collect Vi at non-generator buses and θi at non-slack

buses in the state vector

x =
(
{Vi}i∈N ′ , {θi}i∈N\{σ}

)
∈ Rd, d = |N ′|+ |N | − 1 (1)

I Parameters: collect the remaining voltages and net active and
reactive powers

y =
(
{Vi}i∈N\N ′ , θσ, pg, qg

)
∈ Rm, m = 4nb − d (2)

I By setting y, we can determine a grid state x via the power flow
equations

I How x changes over time is described by an SDE

dxτt = (J − S)∇xH(xτt , y)dt+
√

2τSdWt (3)

for an “energy-function” H : Rd → R, system quantities J, S, and
Brownian motions dWt with variance τ

I Energy function (first integral of dynamics)

H(x, y) := 1
2 (V ◦ eiθ)∗ Y (V ◦ eiθ) + p>netθ + q>net log(V ) (4)
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Failure model
I Any local energy minimizer x̄(y) := arg minx∈Rd H(x, y) solves the

power flow equations and can be taken as a dispatch point
I Query the system for the first time that an observable (Θ(xτt , y)) of

the system exceeds a threshold (Θmax)
I Phrase as a mean first-passage time problem

T τ∂D := inf{t > 0 : Θ(xτt , y) ≥ Θmax}

x̄

x?

∂D
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Failure model (cont’d)

We can consider Θ(x, y) to denote various quantities of interest, for
example...

I ...under-voltage violation: Θ(x, y) = −Vi, Θmax
i = −V trip

i

I ...exceedance of apparent power flow rating:
Θl(x, y) = (sp,l)2 + (sq,l)2, Θmax

l = (strip
l )2

I ...exceedance of current flow (I) rating for line l = (i, j): Θ(x, y) :=
|Bi,j |2

(
V 2
i + V 2

j − 2ViVj cos(θi − θj)
)
, Θmax

l = (Itrip
l )2

And each describe a safety region D(y), failure boundary ∂Dl(y), and
failure region D{

l (y) := Rd\Dl(y) for

Dl(y) := {x ∈ Rd : Θl(x, y) < Θmax
l }

∂Dl(y) := {x ∈ Rd : Θl(x, y) = Θmax
l }.

Cascade-constrained ACOPF Probability model 12 / 32



Computing R(y) in closed form

I Specifies distribution of failure times T τ∂D ∼ Exp(λ) governed by
failure rate parameter λ = 1/E[T τ∂D]

I Relates E[T τ∂D] to an explicitly computable function of the state
space

lim
τ→0

τ logET τ∂Dl
= min
x∈∂Dl

H(x̄(y), y)−H(x?(y), y), (5)

I Can compute subexponential correction to λ, by a Laplace
approximation at the “most-likely” failure point

x?l (y) := arg min
x∈Rd

{H(x, y) : Θl(x, y) = Θmax
l } , (6)
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Failure rate for line l

Failure rate: computation determinants

λτl (y) ∼
τ→0

pfl(y)× efl(y) (7)

pfl(y) := ∇>H?l (y)S∇H?l (y)

√
det∇2

xxH(x̄, y)
2πτB?l (y) (8)

efl(y) := exp
[
−H(x?l , y)−H(x̄, y)

τ

]
, (9)

where ∇H?l (y) and B?l (y) (a factor accounting for the curvature
of ∂Dl(y) in the vicinity of x?) are given by:

∇H?l (y) := ∇xH(x?l , y) (10)
B?l (y) := ∇>H?l (y) adj (Ll(y))∇H?(y) (11)
Ll(y) := ∇2

xxH(x?l , y)− µl∇2
xxΘl(x?l , y), (12)

and µl ∈ R is the Lagrange multiplier in the constraint defining x?
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Risk for line l

Risk:

R(y) := P(T τ∂Dl
(y) ≤ tH) = 1− exp [−λτl (y)tH ] (13)

for time horizon of interest tH
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Conceptual outline

I Each y (implicitly) determines the values of x through the power
flow equations

I Introduce “lower level” optimization variables x to make this
relationship explicit

I Determine the best vector y subject to constraining the probability
of line failure, shedding load if required
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Optimization formulation

We begin with traditional ACOPF

min
x,y

c(y) =
∑
k∈G

ck(pg,k) (14a)

s.t. V min
i ≤ Vi ≤ V max

i ∀i ∈ G (14b)
V min
i ≤ Vi ≤ V max

i ∀i ∈ N\G (14c)
θmin
i ≤ θi ≤ θmax

i ∀i ∈ N (14d)
Θ(x, y) ≤ (Imax)2 ∀l ∈ L (14e)

Next specify a time horizon tH and risk threshold εlim to constrain the
risk for each line l ∈ L

R(y, x(y)) = P(T τ∂Dl
(y) ≤ tH) = 1− exp [−λτl (y)tH ] ≤ εlim (15)
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Remark on risk

Note that the constraint in eq. (15) is a safe approximation for limiting
the probability of

1. Non-independent line failures (use Bonferroni to set εlim
appropriately to limit the probability that at least line fails in tH)

2. Cascading failures over the time horizon tH (limiting the probability
that a single line l failure will occur within tH also limits the
probability of sequences of line failures beginning with line l)

In principle, we can also explicitly limit the probability of sequences of
line failures by considering increasingly nested problems...but leads to
same combinatorial issues as in N − k
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Computation

Challenges
1. Solving a nested optimization problem for x?(y)
2. Encoding constraints with determinants of large matrices (recall the

failure rate prefactor prefactor )

Efficient computation steps
1. Reformulate the R constraint(s)
2. Incorporate the nested x?(y) problem into the top level
3. Address high-dimensional determinants
4. Implement practical considerations
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Constraint reformulation (step 1)

1. Low rank factorization of Θl for fixed line l:

∇2
x,xΘl(x, y) = Ql(x, y)Cl(x, y)Q>l (x, y)

where Ql(x, y) ∈ Rd×r (and r � m) and Cl(x, y) ∈ Rr×r diagonal
2. Taylor approximation:

H(x?l , y) ≈ H(x̄, y) +∇>xH(x̄, y)(x?l − x̄)

+ 1
2(x?l − x̄)>∇2

xxH(x̄, y)(x?l − x̄)

= H(x̄, y) + 1
2(x?l − x̄)>∇2

xxH(x̄, y)(x?l − x̄)
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Nested problem (step 2)

I Suppose that:
1. ∇2

xxH(x̄, y) � 0, and
2. the Taylor approximation (16) is applicable

I Then we can incorporate the definition of x?(y) into the top level
problem by encoding

1. the KKT conditions (stationarity, feasibility, slackness (for free)) as
additional constraints

2. a spectral radius condition on a particular matrix as an additional
constraint

Specifically...

∇2
xxH(x̄, y)(x?l − x̄) = µl∇xΘl(x?l , y) (16)

Θl(x?l , y) = Θmax
l (17)

µl ρ (Al) < 1, (18)

where Al := Dl(x?l , y)Q>l (x?l , y) [∇2
xxH(x̄, y)]−1 Ql(x?l , y) is a rl × rl

matrix.
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Nested problem (step 2)
I Suppose that:

1. ∇2
xxH(x̄, y) � 0, and

2. the Taylor approximation (16) is applicable
I Then we can incorporate the definition of x?(y) into the top level

problem by encoding
1. the KKT conditions (stationarity, feasibility, slackness (for free)) as

additional constraints
2. a spectral radius condition on a particular matrix as an additional

constraint

Specifically...

∇2
xxH(x̄, y)(x?l − x̄) = µl∇xΘl(x?l , y) (16)

Θl(x?l , y) = Θmax
l (17)

µl ρ (Al) < 1, (18)

where Al := Dl(x?l , y)Q>l (x?l , y) [∇2
xxH(x̄, y)]−1 Ql(x?l , y) is a rl × rl

matrix.
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High-dimensional determinants (step 3)

Compute prefactor determinants prefactor using
1. the Taylor approximation of the energy H
2. the low-rank factorization of the constraint Θ

This can be done by introducing auxiliary optimization variables via a
matrix relationship (see Appendix)

Takeaway: able to reduce failure rate sub-expressions to (complicated)
closed-form expressions involving 3 × 3 matrices
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Practical considerations (step 4)

To address warm-starts and infeasibility, the solution procedure is split
into two phases:

1. load-shed determination
2. add R constraints and candidate solve
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Figure: Validation: KKT-approximated failure rates versus true failure rates for
IEEE 118bus model with PGLib line limits at traditional ACOPF set-point
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Cascade prevention experiment procedure

I Determine a set-point y by enforcing R ≤ εlim for various εlim

I Simulate sequences of line failures from the resulting set point using
KMC

I Record time and load-still-served at each failure
I Repeat simulations across a range of parameters settings (τ,Θmax,

and pd, qd load levels); below we show results over load level, known
to be an important determinant of cascade risk
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Shortcomings

I Cascades and failure rates are highly sensitive to τ ; cascades are
induced by using an artificially high temperature

I PGLib line limits are very high, leading to very low initial failure
rates; we are in the process of considering an RTS96 case with limits
that may reflect reality better
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Appendix

I Intermediate terms involved in R are computable in closed form
except for Al which appears in the definition of Wl := I − µlAl

I Skirt this issue by introducing Zl ∈ Rd×rl as follows:

∇2
xxH(x, y) · Zl = Ql(x?l , y), (19)

and then setting Al = Dl(x?l , y)Q>l (x?l , y)Zl
I An alternative is to introduce explicit decision variables Zl in the

ACOPF formulation, along with its definition (19) as additional
constraints. We implemented this alternative since it allows the
complete rate constraint, including all of its intermediate
expressions, to be computed analytically.
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