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Abstract
The top-k-sum operator computes the sum of the largest k components of a given
vector. The Euclidean projection onto the top-k-sum sublevel set serves as a cru-
cial subroutine in iterative methods to solve composite superquantile optimization
problems. In this paper, we introduce a solver that implements two finite-termination
algorithms to compute this projection. Both algorithms have O(n) complexity of float-
ing point operations when applied to a sorted n-dimensional input vector, where the
absorbed constant is independent of k. This stands in contrast to an existing grid-
search-inspired method that has O(k(n − k)) complexity, a partition-based method
with O(n + D log D) complexity, where D ≤ n is the number of distinct elements
in the input vector, and a semismooth Newton method with a finite termination prop-
erty but unspecified floating point complexity. The improvement of our methods over
the first method is significant when k is linearly dependent on n, which is frequently
encountered in practical superquantile optimization applications. In instances where
the input vector is unsorted, an additional cost is incurred to (partially) sort the vector,
whereas a full sort of the input vector seems unavoidable for the other two methods.
To reduce this cost, we further derive a rigorous procedure that leverages approx-
imate sorting to compute the projection, which is particularly useful when solving
a sequence of similar projection problems. Numerical results show that our methods
solve problems of scale n = 107 and k = 104 within 0.05 s, whereas the most compet-
itive alternative, the semismooth Newton-based method, takes about 1 s. The existing
grid-search method and Gurobi’s QP solver can take from minutes to hours.
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1 Introduction

We consider the Euclidean projection onto the top-k-sum (also referred to as max-k-
sum in various works such as [13, 17, 39]) sublevel set. Specifically, given a scalar
budget r ∈ R, an index k ∈ {1, 2, . . . , n}, and an input vector x0 ∈ R

n , our aim is
to develop a fast and finite-termination algorithm to obtain the exact solution of the
strongly convex problem

minimize
x∈Rn

1

2
‖x − x0‖22

subject to x ∈ Br
(k):=

{
x ∈ R

n : T(k)(x):=
k∑

i=1
�xi ≤ r

}
,

(1)

where for any x ∈ R
n , we write �x ∈ R

n as its sorted counterpart satisfying �x1 ≥ �x2 ≥
· · · ≥ �xn , and T(k)(x) represents the sum of the largest k elements of x .

The top-k-sum operator T(k)(•) is closely related to the superquantile of a random
variable, which is also known as the conditional value-at-risk (CVaR) [34], average-
top-k [22], expected shortfall, amongother names. Specifically, consider X as a random
variable. Its superquantile at confidence level τ ∈ (0, 1) is defined as Sτ (X):=min

{
t+

(1−τ)−1E[max(X−t, 0)]}.When X is supported on n atoms x :=(x1, . . . , xn)�, each
with equal probability, then T(k)(x)/k = Sτ(k)(X) averages the largest k realizations
of X , where τ(k):=1− k/n. In the context where X follows a continuous distribution,
one may select n samples x = {xi }ni=1 and construct an empirical sample average
approximation of its superquantile at confidence τ = 1− k/n using T(k)(x).

Owing to the close relationship between the top-k-sum and the superquantile, the
projection problem in (1) has applicability as a subroutine in solving composite opti-
mization problems of the form

minimize
z

f (z)+ Sτ0

(
G0(z;ω0)

)
subject to Sτ

(
G(z;ω)

) ≤ r (2)

where f is a deterministic function, G0 and G are random mappings that depend on
both decision z and random vectors ω0 and ω with finite supports, respectively; r is
the sublevel-set parameter; and τ0, τ are superquantile confidence parameters. Prob-
lem (2) addresses the empirical or sample average approximation of risk-averse CVaR
problems, commonly used in safety-critical applications to manage adverse outcomes,
such as in the robust design of complex systems [8, 14, 16, 24, 38]. Additionally, such
problems arise from the convex approximation of chance constrained stochastic pro-
grams [9, 29], and are relevant to matrix optimization problems involving a matrix’s
Ky-Fan norm [30, 42], i.e., the vector-k-norm of its (already sorted) singular values.
Recently, optimization problems involving superquantiles have attracted significant
attention in the machine learning community, proving instrumental in modeling prob-
lems which: (i) seek robustness against uncertainty, such as mitigating distributional
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shifts between training and test datasets [25], or measuring robustness through proba-
bilistic guarantees on solution quality [33]; (ii) handle imbalanced data [32, 43]; or (iii)
pursue notions of fairness [19, 26, 41]. Interested readers are encouraged to consult a
recent survey [37] for a comprehensive review of superquantiles. A fast and reliable
solver for computing the projection onto the top-k-sum sublevel set, especially when
dealing with a large number of samples, is crucial for first- or second-order methods to
solve the large-scale, complex composite superquantile problem (2). Interested read-
ers are refereed to [36] for a recent study addressing this problem, which requires the
projection oracle (1) in each iteration of the augmented Lagrangian method.

Given that problem (1) is a strongly convex quadratic program, it accommodates the
straightforward use of off-the-shelf solvers, such as Gurobi, to compute its solution.
However, numerical experiments indicate that Gurobi needs about 1-2 minutes at best
to solve problems of size n = 107, thus preventing its use as an effective subroutine
within an iterative approach to solve the composite problem (2); see Table 1 in Sect. 4
for details of the numerical results. In addition, generic quadratic programming solvers
yield inexact solutions. This can lead to a challenge in precisely determining the
(generalized) Jacobian associated with the projection operator (see [36, 42]), which
may be needed in a second-order method to solve composite problems like (2). To
overcome these issues, a finite-termination, grid-search-inspired method is introduced
in [42], which has a complexity of O(k(n − k)) for a sorted n-dimensional input
vector. In the context of composite problems such as (2), the value k is usually set as a
fixed proportion of n, i.e., k = �(1− τ)n	 for an exogenous risk-tolerance τ ∈ (0, 1),
resulting in O(n2) complexity in many practical instances. Consequently, adopting
such a method to evaluate the projection repeatedly in an iterative algorithm to solve
composite problem (2) is still prohibitively costly when n is large (say in the millions),
even if τ is close to 1.

On the other hand, problem (1) is a special case of the vector-k-norm problem
studied in [42], which is a special case of the OWL-norm projection problem studied
in [15, 18, 27]. The paper [18] outlines a scalar rootfinding routine that was not shown
to terminate finitely. An O(n+ D log D) implementation of an algorithm is provided
in [15], where D denotes the number of unique elements in the input vector x0. A
minor extension of the analysis in [15, Theorem 3.2] indicates that the procedure
can be modified to yield an O(n) method for solving the fully sorted vector-k-norm
problem, but the implementation is nontrivial to modify. Finally, [27] introduced a
finite termination semismooth Newton method that exhibited superior performance
relative. However, a potential limitation shared by each of these proposed methods is
that a full sort of the input vector x0 seems unavoidable.

Lastly, the top-k-sum projection problem (1) is related to the isotonic projection
problem minx∈Rn { 12‖x − x0‖2 : xi ≥ x j , ∀(i, j) ∈ E}, where E ⊆ {1, . . . , n} ×
{1, . . . , n} is comprised of the edges of a directed acyclic graph over n nodes. When
E = {(i, i + 1) : 1 ≤ i ≤ n − 1} forms a chain [2], then the constraint set can be
represented by a polyhedral cone known as a (monotone) isotonic projection cone
[23, 28] for fully sorted x0 ∈ R

n . This problem can be solved in O(n) complexity
by the well-known pool adjacent violators algorithm [3] or its primal variant [4].
The constraint in our problem (1) can be viewed as the intersection of the isotonic
constraints and a half space (see the formulation (7) in the next section). Unfortunately,
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the projection onto this intersection cannot be done sequentially onto the latter two
sets, thereby necessitating a specialized approach.

Given this context, the primary contribution of this paper is to provide an efficient
oracle for obtaining an exact solution to the top-k-sum sublevel set projection problem
(1). We propose two finite-termination algorithms, one is based on specializing a piv-
oting method to solve the parametric linear complementarity problem for Z -matrices
[12] (see also [31] for an application to a more general problem of the portfolio selec-
tion) , and the other is a variant of a grid-search based method introduced in [42] that
we call early-stopping grid-search. Both methods have complexities of O(n) for a
sorted input vector x0 ∈ R

n , where the absorbed constant is independent of k. When
the input vector is unsorted, an additional O(k̄1 log n) floating point operations are
needed, where k̄1 ≤ n is not known a priori but can be determined dynamically. To
reduce this additional cost for practical applications in which the procedure to solve
(1) is called repeatedly in an iterative method, we further derive a property of the
projection that can make use of the approximate permutation of x0 (e.g., from the
previous iteration). Extensive numerical results show that our solvers are often (mul-
tiple) orders magnitude faster than (and never slower than) the grid-search method
introduced in [42], the semismooth Newton method in [27], and Gurobi’s inexact QP
solver. The Julia implementation of our methods is available at https://github.com/
jacob-roth/top-k-sum [35].

The remainder of the paper is organized as follows. In Sect. 2, we summarize
several equivalent formulations for solving (1). In Sect. 3, we present a parametric-
LCP (PLCP) algorithm and a new early-stopping grid-search (ESGS) algorithm. We
also present modifications of these algorithms to handle the vector-k-norm projection
problem. Proofs in the preceding two sections are deferred to “Appendices A and B”;
additional detail on the proposed methods is collected in “Appendix C”. We compare
the numerical performance of PLCP and ESGS with existing projection oracles on a
range of problems in Sect. 4. The paper ends with a concluding section.

Notation and preliminaries

For a matrix A, the submatrix formed by the rows in an index set I and the columns in
an index set J is denoted AI,J, where “:” denotes MATLAB notation for index sets,
e.g., I = 1 : n. The vector of all ones in dimension n is denoted by 1n ; for an index set
I ⊆ {1, . . . , n}, 1I denotes the vector with ones in the indices corresponding to I and
zeros otherwise; when clear from context, for example k ≤ n, we abuse notation and
useRn � 1k :=(11:k, 0k+1:n); and ei denotes the i th standard basis vector. For a vector
x ∈ R

n , xi denotes the i th element of x , and for a vector ν, vν denotes the position
of v in ν (so that, e.g., xi x = i). For a vector x ∈ R

n , �x denotes a nonincreasing
rearrangement of x with the convention that �x0:= + ∞ and �xn+1:= − ∞. For any
sorted x0 ∈ R

n and any positive integer k, we may assume without loss of generality
that there exist integers k0, k1 satisfying 0 ≤ k0 ≤ k − 1 and k ≤ k1 ≤ n such that

�x01 ≥ · · · ≥ �x0k0 > �x0k0+1 = · · · = �x0k = · · · = �x0k1 > �x0k1+1 ≥ · · · ≥ �x0n, (3)
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with the convention that k0 = 0 if �x01 = �x0k and k1 = n if �x0n = �x0k . Note that the
presence of strict inequalities is not limiting: for example, if x = 1, then we may take
k0 = 0 and k1 = n. The indices (k0, k1) denote the index-pair of x0 associated with k
and define the related setsα:={1, . . . , k0},β:={k0+1, . . . , k1} and γ :={k1+1 . . . , n}.
For a vector x0 ∈ R

n , the inequality x0 ≥ 0 is understood componentwise, and
x0 � y0 denotes the Hadamard product of x0 and y0. The binary operators “∧” and
“∨” represent “logical and” and “logical or,” respectively. Algorithmic “complexity”
refers to floating point operations.

We also recall the following concepts from convex analysis. The indicator function
δS(x) of a set S ⊆ R

n takes the value 0 if x ∈ S and +∞ otherwise; the support
function is denoted by σS(x0):= supy{〈x0, y〉 : y ∈ S}; and projS(x0) = proxδS (x

0)

denotes the metric projection and proximal operators, respectively.
Next we recall standard notation from the literature of the linear complementar-

ity problem (LCP) [12]. An LCP(q, M), defined by vector q and matrix M , is the
collection of all vectors z such that 0 ≤ Mz + q ⊥ z ≥ 0 where “⊥” denotes orthog-
onality. Given a scalar parameter λ, the parametric LCP (PLCP) is a collection of
LCPs represented by PLCP(λ; q, d, M) = {LCP(q+λd, M) : λ ∈ R}with d being a
direction vector. Finally, we say M ∈ R

n×n is a Z -matrix if all off-diagonal elements
are nonpositive [12].

2 Equivalent formulations and existing techniques

In this section, we review some equivalent formulations of the projection problem (1)
and motivate the form that our algorithms use. In particular, the alternate formulations
either (i) introduce additional variables that destroy desirable structure in the original
problem; (ii) have structure that we do not presently know how to leverage in designing
a finite termination algorithm with complexity independent of parameter k; or (iii) are
no easier than the formulation we use. Before studying the projection problem in
greater detail, we note that there are at least two cases where the solution of this
projection problem is immediate (assuming that x0 does not belong to the top-k-sum
sublevel set): (i) k = 1: x̃i = min{r , x0i } ; and (ii) k = n: x̃i = x0i − (1�n x0 − r)/n.

2.1 Unsorted formulations

The Rockafellar-Uryasev formulation

Using the Rockafellar-Uryasev [34] variational form of the superquantile, the projec-
tion problem (1) for x0 ∈ R

n can be cast as a convex quadratic program (QP) subject
to linear constraints with n + 1 auxiliary variables:

(x̃, t̃, z̃) = argmin
x,t,z

{
1
2‖x − x0‖22 : t +

1

k

n∑
i=1

zi ≤ r/k, z ≥ x − t1, z ≥ 0
}
. (4)

The introduction of t and z destroys strong convexity of the original problem.Nonethe-
less, the interior-point method can be used to obtain a solution in polynomial time.
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As an alternative, problem (4) can be solved via the solution method of the linear
complementarity problem (LCP) [12, 20].

The unsorted top-k formulation

Given x0 ∈ R
n , let κ denote the (possibly unsorted) indices of the k largest elements

of x0 and [k]:=
( �x0

k )
x0 denote the position of the kth largest element of x0. Then x0[k]

and index [k] can be identified O(n) [1, 6] time,1 and a second scan through x0 can
identify κ . Given the indices κ and [k], consider the following problem

x̃ = argmin
x

{ 1
2‖x − x0‖22 : Bx ≤ b

}
, where b:=(r , 0�n−1)� and (5a)

B:=
⎡
⎣

1�κ
B ′I1,:
B ′I2,:

⎤
⎦ , (1κ) j = 1{t∈κ}( j), (5b)

B ′i j :=
{
+1, if (i ∈ κ) ∧ ( j = [k]) or if (i /∈ κ) ∧ ( j = i)

−1, if (i ∈ κ) ∧ ( j = i) or if (i /∈ κ) ∧ ( j = [k]) , (5c)

with B ′ ∈ R
(n−1)×n , I1 = {i ∈ {1, . . . , n} : i ∈ κ \ [k]}, and I2 = {i ∈ {1, . . . , n} :

i /∈ κ}. In general, the feasible region
{
x ∈ R

n : ∑
i∈κ xi ≤ r , xi ≥ x[k], ∀i ∈

κ, x j ≤ x[k], ∀ j /∈ κ
}
is a strict subset of Br

(k), but the optimal solutions must
coincide, as summarized in the following simple result.

Lemma 1 The optimal solution of problem (1) is the same as that of the unsorted top-k
problem (5).

The KKT conditions expressed in (monotone) LCP form are given by 0 ≤ (b −
Bx0) + BB�z ⊥ z ≥ 0, where z ≥ 0 is the dual variable. Aside from the positive
definiteness of BB�, it is not clear if there is additional structure that can be used to
design an efficient LCP solution approach.

The unsorted top-k formulation via the Moreau decomposition

On the other hand, the Moreau decomposition x0 = proxδBr
(k)
(x0) + proxδ∗Br

(k)

(x0)

provides an alternative formulation to compute a solution from x̃ = x0−proxδ∗Br
(k)

(x0).

The conjugate function δ∗Br
(k)

can be computed easily by using properties of linear

programs and is summarized in Theorem 2. Note that the following result is also
useful for computing the dual objective value of a problem involving the top-k-sum
sublevel set.

1 See also quickselect [21] for O(n + k log n) expected time and heapsort and the max-heap data
structure [40], as well as Algorithm 2 in [10] for O(k + (n − k) log k) time.
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Lemma 2 Let B be the unsorted-top-k matrix defined in (5) and c ∈ R
n be arbitrary.

Then

δ∗Br
(k)

(c) =
{

r
k1
�c, if B−�c ≥ 0;

+∞, otherwise.

In addition, the condition B−�c ≥ 0 can be checked in O(n+ k+ (n− k) log k) time
for the worst case and O(n + k log n) time in expectation. Furthermore, a sufficient
condition for B−�c ≥ 0 can be checked in O(n) time.

By Theorem 2, we can compute ỹ := proxδ∗Br
(k)

(x0) using the following formulation

ỹ = argmin
y∈Rn

{ 1
2‖y − (x0 − r

k1)‖22 : B−�y ≥ 0
}
, (6)

with KKT conditions 0 ≤ B−�(x0 − r
k1) + B−�B−1z ⊥ z ≥ 0 for dual variable

z ≥ 0. The matrix B−�B−1 shares properties similar to BB�, but the structure cannot
be leveraged in an obvious manner.

2.2 Sorted formulations

The isotonic formulation

An alternative approach adopted in [42] is based on the observation employed in
Theorem 1: if the initial input to the projection problem (1) is sorted in a nonincreasing
order, i.e., x0 = �x0, then the unique solution will also be sorted in a nonincreasing
order, i.e., x̃i ≥ x̃i+1 for i = 1, . . . , n − 1. Thus (1) is equivalent to

minimize
x∈Rn

1

2
‖x − �x0‖22

subject to

{ k∑
i=1

xi ≤ r , xi ≥ xi+1, ∀i ∈ {1, . . . , n − 1}
}
=: {x ∈ R

n : Cx ≤ b},
(7)

where

b:=(r , 0�n−1)�, C :=
[
(1�k , 0�n−k)−D

]
, D:=

[+1 −1
. . .

. . .

]
∈ R

(n−1)×n, (8)

which consists of nonseparable isotonic constraints (Dx ≥ 0) and a single budget
constraint (1�k x ≤ r ). Problems (1) and (7) are equivalent in the sense that x̄ is the
solution to (7) if and only if there exists a permutation π of {1, . . . , n} with inverse
π−1 such that x̄π−1 = x̃ is the solution to (1). The solution to (7) is obtained by
translating three contiguous subsets of �x0, as depicted in Fig. 1, and it obeys the same
ordering as �x0. The difficulty is in identifying the breakpoints k0 and k1 at the solution
that satisfies (3).
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Fig. 1 Schematic of sorted input �x0 ∈ R
n (grey, top) and sorted projection x̄ ∈ Br

(k) (blue, bottom)

The constraint matrix C associated with the sorted problem (8) is readily seen to
be invertible, and inspection of the KKT conditions yields the LCP(q, M) with data

q:=(r , 0�n−1)� − C �x0 ∈ R
n, M :=CC� ∈ R

n×n . (9)

By direct computation,CC� is a symmetric positive definite Z -matrix (i.e., a K -matrix
cf. [12, Definition 3.11.1]), so Chandrasekaran’s complementary pivoting method [7]
can process the LCP in at most n steps (also see the n-step scheme summarized in [12,
Algorithm 4.8.2]). The matrix M is also seen to be tridiagonal except for possibly the
first row and first column, due to contributions from the budget constraint. As in the
unsorted case, using theMoreau decomposition does not further simplify the problem.

The KKT grid-search

An alternative method for solving the sorted problem (7) is based on a careful study
of the sorted problem’s KKT conditions introduced in [42]. It is shown (cf. Step 2
in Algorithm 4 in [42]) that each (k0, k1) ∈ {0, . . . , k − 1} × {k, . . . , n} defines a
candidate primal solution. The true solution can be recovered by performing a grid-
search over the sorting-indices k0 and k1 and terminating once the KKT conditions
have been satisfied. For each (k0, k1), the KKT conditions can be checked in constant
time that is independent of n and k, so the overall complexity is O(k(n − k)).

3 Proposed algorithms

In this section, we describe two efficient procedures for solving the projection problem
(1) by viewing the top-k-sum sublevel set as the intersection of a summation constraint
and an ordering constraint. The first method is a (dual) parametric pivoting procedure
based on the Z -matrix structure of the sorted problem’sKKTconditions,which ensures
that iterates are sorted and terminates once the summation constraint is satisfied. The
second method uses a detailed analysis of the KKT conditions to refine the (primal)
grid-search procedure introduced in [42], which ensures that the summation constraint
is satisfied (with equality) and terminates once the ordering constraint is satisfied.
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3.1 A parametric-LCP approach

Penalizing the summation constraint in (7) with λ ≥ 0 in the objective yields a
sequence of subproblems parametrized by λ that can be handled by he parametric-
LCP (PLCP) approach described in [12, Section 4.5]. Given a candidate solution that
fails to satisfy both constraints simultaneously, the PLCP prescribes two forms of
corrective actions: increasing the penalty parameter λ ≥ 0 and/or expanding the set of
active isotonic constraints. The former action is moderated by the need to seek a sorted
ordering, which limits how much λ can be increased and results in a piecewise affine
solution mapping with respect to λ. Due to the structure of the isotonic constraints,
both actions can be implemented in constant time, and at most n adjustments to λ will
be needed since the basis cannot contain more than n variables.

For fixed λ, the subproblem is given by

minimize
x∈Rn

1

2
‖x − �x0‖22 + λ · (1�k x − r

)

subject to Dx ≥ 0,
(10)

where D is defined in (8) as the isotonic operator associated with the ordered, consecu-
tive differences in x . Collecting these problems for λ ≥ 0 yields the PLCP(λ; q, d, M)
where M :=DD� is a tridiagonal positive definite Z -matrix. To solve (7), it is suffi-
cient to identify a λ ≥ 0 so that (i) the budget constraint is satisfied; and (ii) the LCP
optimality conditions associated with (10) hold. Let z ≥ 0n−1 be the dual variable
associated with Dx ≥ 0. The KKT conditions of (10) take the form of

0 ≤ w := D( �x0 − λ1k + D�z) ⊥ z ≥ 0, (11)

and yield the following PLCP(λ; q, d, M) formulation of the full projection problem
(7), with PLCP data:

M :=DD�, q:=D �x0 ≥ 0, d:= − D1k = −ek . (12)

One can compute that

M =

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦
∈ R

(n−1)×(n−1), (13)

which is a positive definite Z -matrix. By increasing the parameter λ from 0 to +∞,
one can solve the problem by identifying the optimal basis ξ ⊆ {1, . . . , n − 1} such
that the budget constraint is satisfied, zξ c = 0 (where ξ c = {1, . . . , n − 1} \ ξ ), and
wξ = 0. Due to a special property of the Z -matrix that ensures monotonicity of the
solution z as a function of λ [12, Discussion of Proposition 4.7.2], the unique solution
z(λ̄) can be obtained by solving at most n subproblems. Finally, sinceM is tridiagonal,
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each subproblem for a fixed λ can be solved in O(1), and a primal solution can be
recovered from the optimal dual vector by x̄ = �x0 − λ1k + D�z(λ̄), leading to an
O(n) method where the absorbed constant is independent of k.

Algorithm 1 PLCP projection onto Br
(k)

Initialize:

(i) If T(k)( �x0) ≤ r , return x̄ = �x0.
(ii) Otherwise, if k = 1, set x̄ = min{x0, r}.
(iii) Otherwise, if k = n, set x̄ = �x0 − 1n · (1�n x0 − r)/n.
(iv) Otherwise, handle iteration t = 0.

(a) Set s0 =∑k
i=1 x0i , t = 0, ξ = ∅, qk = x0k − x0k+1, λ = qk , and m = s0 − kλ.

(b) If m ≤ r , set λ̄ = (s0 − r)/k and x̄ = x0 − λ̄1k .
(c) Otherwise, set t = 1, ξ = {k}, a = b = s = k, aξ = kξ = bξ = 1, λa = λb = λ,

z0a = z0k = z0b = −qk · m−1i j (kξ, kξ) = −qk/2, σ = 2 − m−1i j (kξ, kξ) = 3/2, define the

function m−1i j (cξ, dξ):=(M−1ξξ )
cξ,d ξ =

(|ξ | + 1−max{cξ, dξ}) ·min{cξ, dξ} · (|ξ | + 1
)−1,

and proceed.

1: while true do
2: Compute the (t + 1)th breakpoint:

3: λa = (qa−1 − z0a)/m−1i j (ξk , ξa)

4: λb = (qb+1 − z0b)/m
−1
i j (ξk , ξb)

5: λ = min
{
λa , λb

}

6: Compute T(k)(x(λ)) to determine if optimal solution lies within (0, λ]:
7: T = s0 − k · λ+ z0k + m−1i j (kξ, kξ) · λ � compute T(k)(x(λ)).
8: if T ≤ r then
9: λ̄ = (s0 − r + zk )/

(
k − m−1i j (kξ, kξ)

) � solve T(k)(x(λ)) = r for λ.

10: return x̄ = �x0 − λ̄1k + D�z(λ̄) by calling Algorithm 2
11: end if
12: Update z(0) via Schur complement, and update ξ by inspecting {λa , λb}:
13: if λ = λa then
14: z0a = (z0a − qa−1)/σ
15: z0k = z0k + z0a · m−1i j (kξ, aξ)

16: z0b = z0b + z0a · m−1i j (bξ, aξ)

17: a = a − 1, kξ = kξ + 1, bξ = bξ + 1 � ξ = (a − 1, ξ).
18: else
19: z0b = (z0b − qb+1)/σ
20: z0a = z0a + z0b · m−1i j (aξ, bξ)

21: z0k = z0k + z0b · m−1i j (kξ, bξ)

22: b = b + 1, bξ = bξ + 1 � ξ = (ξ, b + 1).
23: end if
24: Increment iteration:
25: t = t + 1 and σ = (t + 2)/(t + 1) � Schur complement: σ = 2− m−1i j (aξ, aξ).

26: end while

The parametric-LCP method specialized to the present problem is summarized in
Algorithm 1. Additional detail on themechanics of the pivots is provided in “Appendix
C.1”. In addition, it is worthwhile to point out that to avoid additional memory alloca-
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Algorithm 2 O(|ξ |) update of y ← y + D�:,ξ zξ from optimal basis elements a, b, kξ , dual λ, and

�x0 ∈ R
n .

Initialize: Set m = b − a + 1, c = 0, ai = 0.
1: Compute cumsum((1, 2, . . . ,m)� reverse(−qλ

ξ )): � cumsum is cumulative sum
2: � reverse reverses the order of a vector
3: for i ∈ {1, . . . ,m} do
4: j = b − i + 1
5: c = c + i · (−( �x0j − �x0j+1)

)
6: if m − i + 1 = kξ then; c = c + λ; end if
7: end for
8: c = c/(m + 1) and ya = ya + c

9: Compute cumsum((1, 2, . . . ,m)�−qλ
ξ ):

10: for i ∈ {2, . . . ,m + 1} do
11: j = a + i − 2
12: c = c − (−( �x0j − �x0j+1)

)
13: if i − 1 = kξ then; c = c + λ; end if
14: y j+1 = y j+1 + c
15: end for

tion, the full dual solution z is not maintained explicitly throughout the algorithm (only
three components, za , zb, and zk are maintained), so the step in line 10 of Algorithm 1
requires a simple but specialized procedure summarized in Algorithm 2 to implicitly
reconstruct z and compute D�z. This can be done in O(|ξ |) cost given an optimal
basis ξ as outlined in Theorem 3. On the other hand, if the user is willing to store the
full dual vector z, then by storing and filling in the appropriate entries of z after each
pivot (line 23 in Algorithm 12), it is clear that D�z can be obtained in O(|ξ |) cost due
to the simple pairwise-difference structure of D and the complementarity structure
which gives zξ c = 0. Finally, we formally state the O(n) complexity result, preceded
by a lemma whose proof is deferred to “Appendix B.1”.

Lemma 3 Algorithm2 computes D�z in O(|ξ |) from initial data �x0 andoptimal output
of Algorithm 1: a, b, kξ , and λ.

Using the above lemma, we arrive at the folowing conclusion.

Proposition 1 The overall complexity to solve the sorted problem (7) by Algorithm 1
is O(n).

Proof We first cite a classical result regarding the number of pivots needed to identify
the optimal basis. By [11, Theorem 2], for every q ≥ 0 and for every d, since M
is a symmetric, positive definite Z -matrix, the solution map z(λ) is a point-to-point,
nondecreasing and convex piecewise-linear function of λ such that z(λ1) ≤ z(λ2)
for 0 ≤ λ1 ≤ λ2. Therefore, once a variable zi becomes basic, it remains in the
basis ξ for every subsequent pivot. Since each zi is monotone nondecreasing and
piecewise-linear, the basis ξ t in iteration t remains optimal over an interval [λt , λt+1].
As a result, the interval [0,+∞) can be partitioned into n pieces S0 ∪ · · · ∪ Sn−1

2 The algorithm computes z0:=z(0) rather than z(λ); the desired vector can be obtained from zξ (λ) =
z0ξ + λM−1ξξ ekξ given basis ξ .
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with progressively larger bases (|ξ0| ≤ · · · ≤ |ξn−1|) such that the solution z(λt )
satisfies the LCP optimality conditions (12) for all λt ∈ St . Since the constraints in
(7) are linearly independent, the optimal dual variables are unique and in particular
the optimal λ̄ is finite in (10).

Given solution z(λt ) in iteration t , each subsequent iteration performs three steps:
(i) determining the next breakpoint λt+1 (lines 2-5); (ii) checking whether or not the
budget constraint is satisfied for some λ ∈ [λt , λt+1] (lines 7-10); and (iii) updating
the solution z(λt+1) for the new breakpoint λt+1 if the budget constraint is not satisfied
(lines 12-23). Each step can be performed in O(1) cost due to the tridiagonal structure
of M and the sparse structure of d. Detailed justification relies on the Sherman-
Morrison and Schur complement identities and is provided in “Appendix C.1”. Finally,
the cost required to recover the primal solution from optimal dual z(λ̄) with basis ξ̄

via x̄ = �x0 − 1kλ+ D�z(λ̄) is readily seen to be O(|ξ̄ |) by the structure of D, using
Theorem 3. Thus, the overall complexity is O(n). ��

3.2 An early-stopping grid-search approach

Since our second algorithm depends on the framework described in [42], we reproduce
some background. Recall that the constraint T(k)(x) ≤ r can be represented by finitely
many linear inequalities, so the following KKT conditions are necessary and sufficient
for characterizing the unique solution x̄ and its multiplier λ̄ to the sorted problem (7):

x̄ = �x0 − λ̄μ for some μ ∈ ∂T(k)(x̄), (14.1)

0 ≤ [ r − T(k)(x̄) ] ⊥ λ̄ ≥ 0. (14.2)

Recall the index-pair (k0, k1) of x0 associated with k in (3) and its related sets

α:={1, . . . , k0}, β:={k0 + 1, . . . , k1}, γ :={k1 + 1, . . . , n}. (15)

For any x0 ∈ R
n where �x0 satisfies the order structure (3), Lemma 2.2 in [42] gives

∂T(k)( �x0) =
{
μ ∈ R

n : μα = 1|α|, μβ ∈ φk1−k0,k−k0 , μγ = 0
}
, (16)

where for m1 ≥ m2,

φm1,m2 :=
{
w ∈ R

m1 : 0 ≤ w ≤ 1, 1�w = m2}. (17)

The procedure in [42] utilizes (16) to design a finite-termination algorithm that finds
a subgradient μ̄ with indices k̄0 and k̄1 so that μ̄ ∈ ∂T(k)(x̄).

3.2.1 KKT conditions

To solve the KKT conditions (14), there are two cases. If T(k)(x0) ≤ r , then x̄ = �x0
and λ̄ = 0 is the unique solution. On the other hand, if T(k)(x0) > r , then T(k)(x̄) = r
and λ̄ > 0. This holds because if λ̄ = 0, then x̄ = �x0 by stationarity, resulting
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in contradiction: by assumption, T(k)(x0) > r , but by primal feasibility T(k)( �x0) =
T(k)(x̄) ≤ r .

Let us now focus on the solution method for the second case where T(k)(x0) > r .
The KKT conditions (14) can be expressed as

x̄ᾱ = �x0ᾱ − λ̄1ᾱ μ̄ᾱ = 1ᾱ

x̄k̄0 > θ̄ > x̄k̄1+1 μ̄β̄ ∈ φk̄1−k̄0,k−k̄0
x̄β̄ = θ̄1β̄ μ̄γ̄ = 0
r = 1�̄α �x0ᾱ − k̄0λ̄+ (k − k̄0)θ̄ λ̄ > 0

(18)

for appropriate indices k̄0 and k̄1. Based on (16), any candidate index-pair (k′0, k′1)
gives rise to a candidate primal solution, which we denote by x ′(k′0, k′1), by solving
a 2-dimensional linear system in variables (θ ′, λ′) derived from summing the α′ and
β ′ components of the stationarity conditions; see “Appendix C.2” for more detail.
Where it is clear from context, we simplify notation by dropping the dependence on
(k′0, k′1) and let x ′ denote x ′(k′0, k′1). On the other hand, we overload notation to let
λ(k′0, k′1) and θ(k′0, k′1) denote the solution to the linear system associated with index
pair (k′0, k′1). Using the form of the KKT conditions, we can recover the candidate
primal solution x ′ as follows:

x ′α′ = �x0α′ − λ′1α′ , x ′β ′ = θ ′1β ′ , x ′γ ′ = �x0γ ′ (19.1)

θ ′ =
(
k′01�β ′ �x0β ′ − (k − k′0)

(
1�α′ �x0α′ − r

))
/ρ′ (19.2)

λ′ =
(
(k − k′0)1�β ′ �x0β ′ + (k′1 − k′0)

(
1�α′ �x0α′ − r

))
/ρ′ (19.3)

ρ′ = k′0(k′1 − k′0)+ (k − k′0)2. (19.4)

Based on (18), the candidate solution (x ′, λ′, θ ′) is optimal if and only if the fol-
lowing five conditions hold:

λ′ > 0, (20.1)

�x0k′0 > θ ′ + λ′, (20.2)

θ ′ + λ′ ≥ �x0k′0+1, (20.3)

�x0k′1 ≥ θ ′, (20.4)

θ ′ > �x0k′1+1. (20.5)

See “Appendix C.2” for detail on the above step, which uses the form of the subdiffer-
ential from (16). To obtain a solution (x̄, λ̄) to the KKT conditions (14), it is sufficient
to perform a grid search over k0 ∈ {0, . . . , k− 1} and k1 ∈ {k, . . . , n} and check (20),
which is the approach adopted in [42, Algorithm 4].

On the other hand, detailed inspection of monotonicity properties of the reduced
KKT conditions (20) yield an O(n) primal-based procedure for solving the sorted
problem (7) as outlined in Algorithm 3. Instead of executing a grid-search over
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{0, . . . , k − 1} × {k, . . . , n}, our procedure exploits the hidden properties of the KKT
conditions. We construct a path from (k0, k1) = (k − 1, k) to (k̄0, k̄1), composed
solely of decrements to k0 and increments to k1. This path maintains satisfaction of
KKT conditions 1, 3, and 4, and seeks a pair (k0, k1) that yields (x, λ) satisfying
complementarity, i.e., KKT conditions 2 and 5. In general, this procedure generates
a different sequence of “pivots” from Algorithm 1 and to the best of our knowledge
does not exist in the current literature.

3.2.2 Implementation

Theprocedure, as summarized inAlgorithm3, is very simple.The algorithm’s behavior
is depicted in Fig. 2, inwhich a path from (k−1, k) to (k̄0, k̄1) is generated by following
the orange and blue arrows. Due to the ordering properties of the problem, a sequence
of index-pairs can be constructed in which (20.1)∧(20.2)∧(20.3) always hold. Since
the optimal LCP basis is contiguous (as shown in “Appendix C.1”) and again due to
certain monotonicity properties, updates to the index-pair (k0, k1) either decrement k0
or increment k1. The former occurs when (20.2) fails to hold, the latter occurs when
(20.5) fails to hold, and the algorithm terminates when both (20.2∧(20.5)) hold.

Algorithm 3 ESGS projection onto Br
(k).

Initialize:

(i) If T(k)(x
0) ≤ r , return x̄ = x0.

(ii) Else, if k = 1, set x̄ = min
{
x0, r

}
.

(iii) Else, if k = n, set x̄ = x0 − 1n · (1�n x0 − r)/n.
(iv) Else, set k0 = k − 1, k1 = k, and solved = 0.

1: while true do
2: Compute candidate θ and λ and KKT indicators:

3: ρ = k0(k1 − k0)+ (k − k0)
2

4: θ = (
k01
�
β x0β − (k − k0)

(
1�α x0α − r

))
/ρ

5: θ + λ = (
k1�β x0β + (k1 − k)

(
1�α x0α − r

))
/ρ

6: kkt2 = x0k0
> θ + λ, kkt5 = θ > x0k1+1

7: Check KKT conditions:
8: if kkt2 ∧ kkt5 then solved = 1
9: else if kkt2 then k1 ← k1 + 1
10: else if ¬kkt2 then k0 ← k0 − 1
11: end if
12: if solved = 1 then
13: return x̄ via x̄α = x0α − λ1α , x̄β = θ1β , and x̄γ = x0γ .
14: end if
15: end while

3.2.3 Analysis

The analysis of Algorithm 3 builds on the framework introduced in [42] for performing
a grid search over candidate index-pairs (k0, k1). The grid search proceeds with outer
loop over k1 ∈ {k, . . . , n} and inner loop over k0 ∈ {0, . . . , k − 1}, though similar
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Fig. 2 Schematic for Algorithm
3. Orange shading indicates that
kkt2 ∧ kkt3 holds; blue
shading indicates that
¬kkt2 ∧ kkt3 holds; red
shading indicates that
kkt4 ∧ kkt5 holds; black
circles trace the trajectory taken
by ESGS and indicate that
kkt1 ∧ kkt3 ∧ kkt4 holds

analysis holds when reversing the search order (but is not discussed further). The new
observation leveraged in Proposition 2 is that the order structure of theKKT conditions
induces various forms of monotonicity in the KKT residuals across k0 and k1. This
monotonicity holds globally (i.e., across all k0 for given k1 or all k1 for given k0) and
implies that the local KKT information at a candidate index-pair (k0, k1) provides
additional information about which indices can be “skipped” in the full grid search
procedure.

For example, in the sample trajectory traced in Fig. 2, the algorithm starts at
(k0, k1) = (k − 1, k) and searches over all k0 in the first column for an index-pair
that satisfies KKT conditions 2 and 3. Suppose that such an index is found in some
row, which we denote by k∗0(k) to emphasize the dependence of such a row on the
column k1 = k. Further suppose that the pair (k∗0(k), k) does not satisfy all of the
KKT conditions. Then monotonicity implies that no candidate index-pair (k′0, k) for
k′0 ≤ k∗0(k) can satisfy all of the KKT conditions, providing an early termination to
the inner search over k0 associated with column k1 = k. This justifies terminating the
current search over k0 in column k1 = k and increasing k1← k1+1. At this point, the
full grid search would begin again at (k − 1, k + 1). However, another monotonicity
property of the KKT residuals implies that all k′0 > k∗0(k) cannot be optimal, which
justifies starting the grid search “late” at (k∗0(k), k + 1) rather than (k − 1, k + 1).
Based on these ideas, the main effort in establishing the correctness of Algorithm
3 is in showing how to use monotonicity properties of the KKT residuals to justify
transitions “up” or “right”. The first idea is summarized in Lemma 5 and the second is
summarized in Lemma 6. Proposition 2 is obtained by combining these earlier results,
immediately giving the desired complexity analysis.

We begin the analysis of Algorithm 3 by making the following assumption.

Assumption 1 (Strict projection) For the initial vector x0 ∈ R
n , it holds that

T(k)(x0) > r .

For simplicity of notation, we also assume that the initial point is sorted x0 = �x0 and
drop the sorting notation in the remainder of this section (and its proofs).
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At a candidate index-pair (k0, k1), define the KKT satisfaction indicators

kkt1(k0, k1):=1{t>0}
(
λ(k0, k1)

)
, (21.1)

kkt2(k0, k1):=1{t>0}
(
x0k0 − (θ + λ)(k0, k1)

)
, (21.2)

kkt3(k0, k1):=1{t≥0}
(
(θ + λ)(k0, k1)− x0k0+1

)
, (21.3)

kkt4(k0, k1):=1{t≥0}
(
x0k1 − θ(k0, k1)

)
, (21.4)

kkt5(k0, k1):=1{t>0}
(
θ(k0, k1)− x0k1+1

)
, (21.5)

where 1{t∈S}(x) = true is x ∈ S and false otherwise; and where λ(•, •) and
θ(•, •) denote the values of λ and θ corresponding to a particular index-pair. By (20),
an index-pair (k0, k1) is optimal if and only if

kkt1(k0, k1) ∧ kkt2(k0, k1) ∧ kkt3(k0, k1) ∧ kkt4(k0, k1) ∧ kkt5(k0, k1).
(22)

Note that the presence of strict inequalities precludes arguments that appeal to linear
programming. Instead we conduct a detailed study of the KKT conditions directly.

We begin by arguing that starting from (k0, k1) = (k−1, k), wemay “forget” about
checking conditions 1, 3, and 4 and instead only seek satisfaction of conditions 2 and
5. We refer to Fig. 2 when referencing “rows” and “columns” of the search space. We
also delay verification of claims involving “direct computation” to “Appendix B.2”
but provide references in the text.

Lemma 4 Beginning from (k0, k1) = (k − 1, k), the trajectory taken by Algorithm 3
always satisfies KKT conditions 1, 3, and 4.

Proof We proceed inductively. Let k0 = k− 1 and k1 = k be the initial point and note
that KKT conditions 1, 3, and 4 hold at (k0, k1) by direct computation (“Claim B.1”).
This establishes the base case.

Next, let (k0, k1) be any candidate index-pair where kkt1(k0, k1), kkt3(k0, k1),
and kkt4(k0, k1) hold and (k′0, k′1) be the next iterate generated by the procedure. To
show that KKT conditions 1, 3, and 4 at (k′0, k′1), consider the four cases based on
which of the remaining KKT conditions (2 and 5) hold at (k0, k1). For shorthand, let
kkti = kkti (k0, k1) and kkt′i = kkti (k′0, k′1) for i ∈ {1, . . . , 5}.
(i) kkt2∧kkt5: The algorithm terminates at the current iterate, which is the unique

solution.
(ii) kkt2 ∧ ¬kkt5: k1 ← min

{
k1 + 1, n

}
. The index-pair (k′0, k′1) = (k0, k1 + 1)

is the next point generated by the algorithm. At (k′0, k′1), the conditions kkt′1,
kkt′3, and kkt′4 hold because of the following argument.

– kkt′1: Direct computation (Claim B.4(4)) shows that ¬kkt5 ⇐⇒
Δk1λ(k0, k1) ≥ 0 ⇐⇒ λ(k0, k1 + 1) ≥ λ(k0, k1). Since λ(k0, k1) > 0 by
assumption, it holds that λ(k′0, k′1) = λ(k0, k1 + 1) > 0.

– kkt′3: By definition, kkt3 ⇐⇒ (θ + λ)(k0, k1) ≥ x0k0+1, so it suffices
to show that (θ + λ)(k′0, k′1) ≥ (θ + λ)(k0, k1). The desired condition is
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equivalent to Δk1(θ + λ)(k0, k1) ≥ 0. Direct computation (Claim B.4(5))
shows that Δk1(θ + λ)(k0, k1) ≥ 0 ⇐⇒ ¬kkt5. Since ¬kkt5 holds by
assumption, the desired condition kkt′3 holds.

– kkt′4: Direct computation (Claim B.2(4)) shows that ¬kkt5 ⇐⇒ kkt′4.

(iii) ¬kkt2∧¬kkt5: k0 ← max
{
k0− 1, 0

}
. The index-pair (k′0, k′1) = (k0− 1, k1)

is the next point generated by the algorithm. At (k′0, k′1), the conditions kkt′1,
kkt′3, and kkt′4 hold because of the following argument.

– kkt′1: It suffices to show that λ(k0 − 1, k1) ≥ λ(k0, k1), i.e., Δk0λ(k0 −
1, k1) ≤ 0. Direct computation (Claim B.4(2)) shows that ¬kkt2 ⇐⇒
Δk0λ(k0 − 1, k1) ≤ 0.

– kkt′3: Direct computation (Claim B.2(2)) shows ¬kkt2 ⇐⇒ kkt′3.
– kkt′4: Since kkt4 ⇐⇒ x0k1 ≥ θ(k0, k1) and kkt′4 ⇐⇒ x0k1 ≥ θ(k0 −
1, k1), it suffices to show that θ(k0, k1) ≥ θ(k0 − 1, k1), i.e., Δk0θ(k0 −
1, k1) ≥ 0. Direct computation (Claim B.4(1)) shows that ¬kkt2 ⇐⇒
Δk0θ(k0 − 1, k1) ≥ 0.

Further, observe that transitions from case (iii) to case (iv) cannot occur, i.e., that
¬kkt2 ∧ ¬kkt5 cannot transition to ¬kkt′2 ∧ kkt′5. To show this, it suffices
to show that ¬kkt′5 must hold. This is true because of the following argument:

¬kkt2
(a)⇐⇒ Δk0θ(k0 − 1, k1) ≥ 0 ⇐⇒ θ(k0 − 1, k1) ≤ θ(k0, k1)

(b)≤ x0k1+1

where (a) follows from direct computation (Claim B.4(1)) and (b) follows from
the definition of ¬kkt5. Thus ¬kkt′5 ≡ ¬kkt5(k0 − 1, k1) must hold.

(iv) ¬kkt2∧kkt5: k0 ← max
{
k0−1, 0

}
. By the argument in case (iii), transitions

to case (iv) must come from case (ii). The next point generated by the algorithm
is (k′0, k′1) = (k0 − 1, k1). At (k′0, k′1), the conditions kkt′1, kkt′3, and kkt′4
hold because of the following argument.

– kkt′1: Direct computation (Claim B.4(2)) shows that ¬kkt2 ⇐⇒
Δk0λ(k0 − 1, k1) ≤ 0, which implies that λ(k0 − 1, k1) ≥ λ(k0, k1) > 0.

– kkt′3: Direct computation (Claim B.2(2)) shows that ¬kkt2 ⇐⇒ kkt3.
– kkt′4: Direct computation (Claim B.4(1)) shows that ¬kkt2 ⇐⇒

Δk0θ(k0 − 1, k1) ≥ 0, which implies that θ(k0 − 1, k1) ≤ θ(k0, k1) ≤ x0k1 .

Finally, setting x00 :=+∞ and x0n+1:=−∞, it is clear that the algorithm is guaranteed to
terminate since the last index-pair possibly scanned is (k0, k1) = (0, n), and if k0 = 0,
then kkt2; otherwise, if k1 = n, then kkt5. Therefore, the procedure maintains
satisfaction of KKT conditions 1, 3, and 4 throughout its trajectory. ��

It remains only to identify an index-pair that satisfies both conditions 2 and 5.
Toward this end, we justify stopping the inner k0 loop early (within a column) if an
index-pair is found that satisfies condition 2 by showing that no index-pair “above”
the current iterate (in the same column) can satisfy condition 2.

Lemma 5 (Early stop) Suppose that KKT condition 2 holds at a candidate index-pair
(k0, k1) along the trajectory of Algorithm 3 (e.g., in case (ii) of the proof of Lemma
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4). Then there does not exist an index-pair (k′0, k1) that satisfies KKT condition 2 for
k′0 < k0.

Proof The claimholds because for any k1, there is atmost one element k′0 ∈ {0, . . . , k−
1} such that kkt2(k′0, k1) and kkt3(k′0, k1) both hold. The proof is by contradiction.
Fix any k1 ∈ {k, . . . , n}, and suppose that there exist two indices k′0 and k′′0 for
which kkt2(k′0, k1)∧kkt3(k′0, k1) and kkt2(k′′0 , k1)∧kkt3(k′′0 , k1) hold. By direct
computation (Claim B.3), the sets K 2(k1) (K¬2(k1)) and K 3(k1) (K¬3(k1)) where
KKT conditions 2 and 3 are satisfied (not satisfied) are contiguous, so it suffices to
consider k′′0 = k′0 − 1. By direct computation (Claim B.2(2)), kkt2(k′0, k1) ⇐⇒¬kkt3(k′0− 1, k1) = ¬kkt3(k′′0 , k1), a contradiction. Therefore there can be at most
one element that satisfies KKT conditions 2 and 3, and stopping early is justified. ��
Finally, we justify the “late start” of the inner k0 loop after moving from column k1 to
k1 + 1.

Lemma 6 (Late start) For a given k0, consider a transition from k1 to k1 + 1 along
the trajectory of Algorithm 3. The optimal solution (k̄0, k̄1) must satisfy k̄0 ≤ k0 and
k̄1 ≥ k1.

Proof EvaluateKKTcondition 2 at the new iterate (k0, k1+1). Ifkkt2(k0, k1+1), then
by the preceding two lemmas, k0 is the unique element from the column associatedwith
k1 + 1 that satisfies both KKT conditions 2 and 3. Otherwise, if ¬kkt2(k0, k1 + 1),
then by direct computation (Claim B.3), any index k′0 > k0 will not satisfy KKT
condition 2 and therefore not be optimal. ��

Combining our prior results, we obtain the desired conclusion.

Proposition 2 The procedure given in Algorithm 3 terminates at the unique solution
(k̄0, k̄1) in at most n steps using O(n) elementary operations.

Proof The conclusion is an immediate consequence of Lemmas 4, 5, and 6 and the
form of the updates in Algorithm 3. Since there can be at most n − k transitions of
the form k1← k1 + 1 and at most k transitions of the form k0 ← k0 − 1, there are at
most n total transitions, and hence the proof is complete. ��

3.3 Partial sorting

Until now, the sorted problem (7) has assumed that a full sorting permutation is given
and has been applied to the input data x0 ∈ R

n . However, it is of significant practical
interest to note that since the elements of γ̄ are unperturbed, it is only necessary that
the initial permutation that sort the largest L ≥ k̄1 ≡ n − |γ̄ | indices of x0 ∈ R

n . Let
us call a permutation with L ≥ k̄1 an “optimal” permutation, which can be obtained
offline in O(L log n) by heapsort. When k  n, then |γ | may be close to n, and
the initial cost of obtaining an optimal permutation may be greatly reduced. Since
k̄1 is not known at runtime, though, determining whether a candidate permutation is
optimal a priori is not possible. However, in the following proposition, we provide an
implementable condition for checking whether the result of a projection based on a
candidate permutation is indeed optimal.
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On the other hand, we may instead seek to construct an optimal permutation in an
“as-needed” fashion by embedding the sorting within the solution procedure. That is,
since Algorithms 1 and 3 only inspect elements of x0 in a contiguous and increasing
subset of {1, . . . , n}, the sortingmay be performed online. This leads to an O(k̄1 log n)

overall procedure, despite the fact that k̄1 is not known at runtime, as summarized in
the following proposition.

Proposition 3 The following two claims hold for any given x0 ∈ R
n:

1. Let π̂ be a given permutation of x0 (not necessarily in the nonincreasing order).
Define x̂ :=projBr

(k)
(x0

π̂
) and x̃ :=projBr

(k)
(x0) as the solutions of the candidate and

unsorted problems, respectively, and let k̂1 be the index corresponding to x̂ in (3).
If (i) x̂k̂1 > (x0

π̂
)i for all i ∈ {k̂1 + 1, . . . , n}, and (ii) the elements in x̂1:k̂1 are

sorted in the nonincreasing order, then one can obtain x̃ via (x̃π̂ )1:k̂1 = x̂1:k̂1 and
(x̃π̂ )k̂1+1:n = (x0

π̂
)k̂1+1:n, i.e., π̂ is an optimal permutation.

2. A solution x̃ to the unsorted problem can be obtained in O(k̄1 log n) operations,
where k̄1 = n − |γ̄ | is the second component of the unique optimal index-pair
satisfying KKT conditions (21), which is unknown-at-runtime but can be identified
dynamically.

Proof Let π̄ be a full (and hence optimal) sorting permutation of x0 so that x0π̄ = �x0.
The KKT conditions require a solution to satisfy x̄k̄1 ≡ θ̄ > (x0π̄ )k̄1+1. By the ordering
on x0π̄ , it holds that (x0π̄ )i ≤ (x0π )k̄1+1 for all i ≥ k̄1 + 1. If x̂ satisfies all the KKT
conditions associated with the π̂ -permuted problem and (x̂π̂ )k̂1

> (x0
π̂
)i for all i ∈

{k̂1 + 1, . . . , n}, then it satisfies the KKT conditions of the fully sorted problem.
To justify the O(k̄1 log(n)) complexity, we argue that the heapsort algorithm

can be embedded within the iterative approaches of Algorithms 1 and 3. We provide
an argument for Algorithm 1 and note that Algorithm 3 can be handled similarly.
Explicitly, construct a (binary) max-heap based on the input vector x0 in O(n) cost.
The largest element of any heap can be extracted in O(log n) time. Therefore, sorted
elements �x01, . . . , �x0� can be obtained in O(� log n) time by by extracting themaximum
element of the (successively modified) heap � times. Next, given a suboptimal candi-
date index-pair (k0, k1), the next pivot requires inspecting either �x0k0−1 or �x0k1+1; the
former can be stored from the initial extraction process, and the latter can be obtained
in O(log n) time from the modified heap. Since the optimal index-pair (k̄0, k̄1) is
unique, the procedure performs exactly k̄1 extractions for a cost of O(k̄1 log n). ��

Proposition 3 is useful in applications inwhich the solution to the projection problem is
not expected to change significantly from iteration to iteration. An important example
of this is in solving a sequence of related projection problems (such as in linesearch
or projected gradient descent) when the input vector does not change significantly.
For the first problem in the sequence, the online sorting property may be used to
identify an initial permutation π̄ (1) ≡ π̂ (1) in O(k̄1 log n) via claim 2. For subsequent
problems (indexed by ν), the previous problem’s sorting permutation π̂ (ν) may be
used to warm-start the construction of an approximate sorting permutation π̂ (ν+1).

123



J. Roth, Y. Cui

3.4 Relation to the vector-k-norm ball

We now briefly state how the previous two approaches can be utilized when solving
the related but distinct (and slightly more complicated) problem of projection onto the
(Ky-Fan) vector-k-norm ball studied in [42]. The vector-k-norm ball of radius r ≥ 0
is defined by Vr(k):={z ∈ R

n :∑k
i=1 �|z|i ≤ r}, and the sorted vector-k-norm problem

only differs from the sorted top-k-sum problem (7) by the additional constraint zn ≥ 0.
That is, the sorted formulation

z̄:= argmin
z∈Rn

{ 1
2‖z − �z0‖22 : 1�k z ≤ r , zi ≥ zi+1, ∀i ∈ {1, . . . , n − 1}, zn ≥ 0

}

(23)

has polyhedral region {z ∈ R
n : V z ≤ v} with data V =

[
(1�k , 0�n−k)−E

]
, E :=

[
D

(0�n−1, 1)

]
, v:=(r , 0�n )�, where D is the isotonic difference operator defined in

(8). The penalized problem with PLCP data M :=EE�, q:=E �z0 and direction vector
d:= − E 1k = −ek shares nearly identical structure with (12), so pivots can be
performed in a similar manner to the approach outlined in Algorithm 1.

On the other hand, [42] provide a two-step routine (Algorithm 4) for solving the
vector-k-norm projection problem based on the observation that the kth largest value
of the solution must satisfy (i) z̄[k] = 0; or (ii) z̄[k] > 0. The first step identifies a
solution satisfying condition (i), if one exists, in O(k) complexity; otherwise if it does
not exist, the second step identifies a solution satisfying condition (ii) by performing a
grid search over all index-pairs (k0, k1). The second step is the algorithm that we refer
to as the “KKT grid-search” method in Sect. 2. The KKT conditions of the second case
coincide with the KKT conditions of the top-k-sum problem, so Algorithm 3 can be
substituted for the second step in [42, Algorithm 4], yielding a procedure with overall
complexity of O(n) on sorted input vector �z0. Each step needs to run sequentially,
though, so the ESGS-based approach incurs an additional O(k) cost in instances that
are not solved in the first step.

4 Numerical experiments

To evaluate the performance of our proposed algorithms, we conduct a series of numer-
ical experiments on synthetic datasets. We implement the algorithms in Julia [5]
and execute the tests on a 125GB RAMmachine with Intel(R) Xeon(R) W-2145 CPU
@ 3.70GHz processors running Julia v1.9.1.

The experimental problems were formulated based on the following protocol: the
index k and right-hand side r are set as k = τ ck · n and r = τr · T(k)(x0), where
τ ck = 1− τk and τr take on values from the sets:

– τr ∈ {−8, −4, −2, −1, − 1
2 , − 1

10 , 0,
1
10 ,

1
2 ,

9
10 ,

99
100 ,

999
1000 };

– τ ck ∈ { 1
10000 ,

1
1000 ,

1
100 ,

5
100 ,

1
10 ,

1
2 ,

9
10 ,

99
100 ,

999
1000 ,

9999
10000 }.
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For context, inmany practical scenarios (e.g., the risk-averse superquantile constrained
problems), the values of τ ck typically fall between 1% and 10%. To facilitate more
intuitive interpretation of our computational findings, initial vectors are generated
uniformly from [0, 1]n in double precision. As τr approaches 1, the projection prob-
lems tend to become easier because T(k)(x0) ≈ r . Conversely, as τr trends towards
−∞, the projection problems become more challenging as the solution will have a
substantial deviation from the original point. The problem dimension n is set from
n ∈ {101, 102, . . . , 107}, and 100 instances are generated for each scenario unless
stated otherwise.

The ESGS, PLCP, GRID (our implementation of the grid-search method from
[42]), and SSN (our implementation of the semismooth Newton method from [27])
are written in Julia and use double precision for the experiments, though they
can also handle arbitrary precision floats and rational data types. The partition-based
method [15] was not studied since it was found to be significantly slower than the SSN
method in [27]. The finite-termination methods use a single core but can make use
of simd operations. The QP solver utilizes the barrier method provided by Gurobi
v10.0 to solve both the sorted (7) and unsorted (5) formulations, called GRBS and
GRBU, respectively. The feasibility and optimality tolerances are set to 10−9, the
presolve option to the default, and the method is configured to use up to 8 cores.
Model initialization time is not counted towards Gurobi’s solve time. Both Gurobi
methods and the GRID method have time-limits of 10,000 seconds for each instance.

Results and discussion

The numerical results are summarized in Table 1, and Figs. 3 and 4.
Across all values of n, our two proposedmethods consistently outperform the exist-

ing grid-search method, the Gurobi QP solver, and the SSN method, often achieving
improvements by several orders of magnitude. The scaling profile in Fig. 3 reveals
the linear behavior of our proposed methods, the sparsity-exploiting inexact method
GRBU based on the formulation (5), and the SSN method. In contrast, the grid-search
method exhibits quadratic scaling, and the sorted inexact method GRBS based on (7)
exhibits performance that degrades in harder large-n cases. For problem sizes where
n ∈ {106, 107}, the solution time of the grid-search and Gurobi methods is on the
order of minutes or hours; on the other hand, our methods obtain solutions in fractions
of a second. In addition, our procedures require significantly less computational time
than the partial-sort time threshold, which the SSN method exceeds in each of the six
experiments.

In Table 1, we highlight the computational results for a few experiments based on
parameters which we expect to be of practical interest. In Experiments 1 through 3,
we fix k to be a small proportion of n and vary the budget r from large to small;
Experiments 4 through 6 follow a similar pattern, but with a larger value of k. A clear
takeaway from the results is that the (full) sorting procedure requires more time than
solution procedure of our proposed algorithms for sorted input. This highlights the
importance of Proposition 3. Sorting is also more costly than the grid-search method
for small n, but formoderate-to-large n, the O(k(n−k)) computational cost of the grid-
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Fig. 3 Average total computation time excluding sort time and full sort time vs n. All results are averaged
over 100 instances, except for methods GRID, GRBS, and GRBUwith n ∈ {106, 107} in which a time-limit
of 104 seconds is imposed across 2 instances

Fig. 4 Computation time relative to ESGS averaged over 100 instances. A value of c > 0 indicates that
ESGS was c times faster than the other method; a value of c < 0 indicates that the other method was c
times faster than ESGS. Across all scenarios at n = 105, the better of GRBS and GRBU was at best≈ 350
times slower than ESGS (and never faster)
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search method dominates the sorting time, even for very small τk as in Experiments 1
through 3.

Another observation from Table 1 is that the performance of the finite-termination
algorithms is problem-dependent,with the grid-searchmethod being themost variable.
On the other hand, the performance of the Gurobi QP solver based on the unsorted
formulation (5) is relatively stable across different instances, in addition to being
significantly more efficient than the sorted formulation (7). A plausible reason for
this phenomenon is that the number of active constraints at the solutions are different
for the two formulations: for instances in Experiments 3 and 6 with n = 106, the
sorted formulation yields averages of 104 and 9.6× 103 number of active constraints,
compared to 9.8×103 and 3.8×103 for the unsorted formulation. Theoretically, only
|β| number of constraints (see Fig. 1) should be binding for the unsorted formulation,
whereas many more constraints could be binding for the sorted formulation.

Figure 4 compares the relative performance of the proposed methods across the
entire spectrum of the parameters r and k. Figure 4a shows that ESGS performs
about 1.5-2 times better (and never worse) than PLCP across the spectrum, though its
advantage degrades in the easier instances inwhich τr ≈ 1. Figure 4b shows that ESGS
performs significantly better than GRID in many cases of practical interest (see the
bottom of the “backwards L” in the lower lefthand corner) where we observe excesses
of 104-fold run-time improvement. Figure 4c shows that ESGS performs no less than
about 5 times faster than SSN and can be orders of magnitude faster in instances where
the input vector nearly satisfies the constraint.

5 Conclusions

We have provided two efficient, finite-termination algorithms, PLCP and ESGS, that
are capable of exactly solving the top-k-sum sublevel set projection problem (1).
When the input vector is unsorted, the solution requires a floating point complexity of
O(n log n), andwhen sorted, it reduces to O(n). These implementations improve upon
existingmethods by orders ofmagnitude inmany cases of interest; notably, they can be
over 100 times faster than Gurobi, the grid-search method, and the SSN method. Our
numerical experiments also show that ESGS is faster than PLCP by a factor of≈ 2 in
harder instances where many pivots are required while maintaining a slight advantage
in easier instances that require fewer pivots. Such instances may arise when solving
a sequence of similar problems, as is the case when employing an iterative method
to solve superquantile constrained composite optimization problems in the form of
(2), which necessitate repeated calls to a projection oracle. Moreover, our proposed
techniques, withminimal modifications, can be applied to compute the projection onto
the vector-k-norm ball. In this case, PLCP can avoid incurring an additional O(k)
cost that an ESGS-based approach unavoidably pays (see Step 1 in [42, Algorithm
4]). Finally, it is anticipated that projection onto the top-k-sum sublevel set can find
use in projection onto more complex composite superquantile regions, which can
be leveraged within iterative solvers for addressing general composite superquantile
problems such as (2).
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A Proofs for Section 2 (Equivalent Formulations and Existing
Techniques)

Lemma 1 The optimal solution of problem (1) is the same as that of the unsorted top-k
problem (5).

Proof Equivalence follows from a direct application of the observation that for any
y, z ∈ R

n ,

〈y, z〉 ≤ 〈 �y, �z〉, (∗)

and equality holds if and only if there exists a permutation π that simultaneously sorts
y and z, i.e., yπ = �y and zπ = �z.

Because the objectives are strongly convex, both problems have unique solutions
x̃ (1) and x̃ (5). LetF(1) andF(5) denote the feasible regions of the projection problems,
and ν(1) and ν(5) denote the optimal values. It is clear that F(5) ⊆ F(1) (in general,
strict subset), so ν(1) ≤ ν(5). On the other hand, by (∗) both x̃ (1) and x̃ (5) must have
the same ordering as x0, and thus x̃ (1) ∈ F(5), so ν(5) ≤ ν(1) by the optimality of x̃ (5)

for (5) and the fact that both problems share the same objective function. Therefore
the problems are equivalent. ��

Lemma 2 Let B be the unsorted-top-k matrix defined in (5) and c ∈ R
n be arbitrary.

Then

δ∗Br
(k)

(c) =
{

r
k1
�c, if B−�c ≥ 0;

+∞, otherwise.

In addition, the condition B−�c ≥ 0 can be checked in O(n+ k+ (n− k) log k) time
for the worst case and O(n + k log n) time in expectation. Furthermore, a sufficient
condition for B−�c ≥ 0 can be checked in O(n) time.

Proof For c ∈ R
n , we have for B and b defined in (5)

δ∗Br
(k)

(c) = max
x
{c�x − δBr

(k)
(x)} = max

x
{c�x : Bx ≤ b} (definition)

= max
y
{c�B−1y : y ≤ b} = max

y
{(B−�c)�y : y ≤ b}. (B is invertible)

Suppose that there is an index i∗ such that (B−�c)i∗ < 0. Then by taking yi∗ ↓ −∞,
the objective tends to+∞. When B−�c ≥ 0, then the problem has an optimal (finite)
solution that occurs at an extreme point, i.e., y∗ = b, with objective value c�B−1b =
r
k1
�c by direct verification.
Next consider verifying the condition B−�c ≥ 0. First identify the index [k] = c[k]c

(the index of the kth largest element of c) in O(k+(n−k) log k) by usingmax-heaps or
O(n) expected time using quickselect. Next, scan c to identify the elements and
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κ = {i ∈ {1, . . . , n} : ci ≥ c[k]}, ensuring that |κ| = k (ties can be split arbitrarily) in
O(n) time. Then, the form of B−1 can be verified to take the form

B−1 = i = [k] i ∈ κ \ [k] i /∈ κ[ 1
k1 V W

]

where V is a matrix of columns of the form 1
k1− ei for i ∈ κ \ [k] for standard basis

vector ei and W is a matrix of columns of the form ei for i /∈ κ . Thus B−�c ≥ 0 can
be checked in O(n + k + (n − k) log k) time or O(n) expected time by checking (i)
ci ≥ 0 for i /∈ κ; and (ii) 1

k1
�c − ci ≥ 0 for i ∈ κ \ [k]. As a consequence of the

form of B−1, a sufficient condition for B−�c ≥ 0 is: c ≥ 0 and ci ≤ 1
k1
�c for all

i ∈ {1, . . . , n}, which can be checked in O(n) time by disregarding the identification
of κ . ��

B Proofs for Section 3 (Proposed Algorithms)

B.1 PLCP

Lemma 3 Algorithm 2 computes D�z in O(|ξ |) from initial data �x0 andoptimal output
of Algorithm 1: a, b, kξ , and λ.

Using the above lemma, we arrive at the folowing conclusion.

Proof Let ξ be a given contiguous subset with |ξ | = m and suppress the dependence
on ξ . The goal is to compute D�ξ,:zξ where zξ = −M−1ξξ (qξ + λdξ ). For convenience,

we drop the dependence on ξ . The matrix M−1 = (DD�)−1 is completely dense and
symmetric with (lower triangular) entries given by

(DD�)−1 = 1

m + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · m
1 · (m − 1) 2 · (m − 1)

1 · (m − 2) 2 · (m − 2)
. . .

...
...

. . .

1 · 2 2 · 2
1 · 1 2 · 1 · · · m · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m×m .

By direct computation,

D�(DD�)−1 = 1

m + 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m m − 1 m − 2 · · · 2 1
−1 m − 1 m − 2 · · · 2 1
−1 −2 m − 2 · · · 2 1
...

...
...

. . .
... 1

−1 −2 −3 · · · 2 1
−1 −2 −3 · · · −(m − 1) 1
−1 −2 −3 · · · −(m − 1) −m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(m+1)×m .
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Then it is clear that D�(DD�)−1v computes the difference of two cumula-
tive sum vectors of v, c1 = cumsum((1, 2, . . . ,m) � reverse(v)) and c2 =
cumsum((1, 2, . . . ,m) � v), i.e.,

(
D�(DD�)−1v

)� = (c1, 0) − (0, c2), where
cumsum denotes the cumulative sum operation and reverse reverses the order
of a vector. ��

B.2 ESGS

In this section, we provide additional observations and verifications of the computa-
tions claimed in the analysis of Algorithm 3 in Sect. 3.2.3.

B.2.1 Simple observations

We begin by observing that for any candidate (k0, k1) with k0 ∈ {0, . . . , k − 1} and
k1 ∈ {k, . . . , n}, it holds that ρ(k0, k1):=k0 · (k1 − k0) + (k − k0)2 > 0. Next we
verify that conditions 1, 3, and 4 hold at the initial iterate.

Claim B.1 (Initial candidate index-pair (k − 1, k)) For any k ≥ 1, it holds that (i)
kkt1(k − 1, k); (ii) kkt3(k − 1, k); and kkt4(k − 1, k).

Proof Let k ≥ 1. Using the fact that ρ(k − 1, k) = k > 0, the proofs follow by direct
computation.

1. Using 0 <
∑k

i=1 x0i −r fromAssumption 1, it holds that ρ(k−1, k)·λ(k−1, k) =
k · λ(k − 1, k) = k · (x0k +

∑k−1
i=1 x0i − r

)
> 0.

2. Since k ≥ 1 and since x0 is sorted, it holds that ρ(k − 1, k) · (θ + λ)(k − 1, k) =
k

∑k
i=k x0i + (k − k) · (∑k−1

i=1 x0i − r
) = kx0k ≥ kx0k0−1+1 = ρ(k − 1, k) · x0k .

3. Using 0 <
∑k

i=1 x0i −r fromAssumption 1, it holds that ρ(k−1, k)·θ(k−1, k) =
(k − 1)x0k − (k − (k − 1))

(∑k−1
i=1 x0i − r

) = kx0k −
(∑k

i=1 x0i − r
)

< kx0k =
ρ(k − 1, k) · x0k .

Thus the claims are proved. ��

B.2.2 Linking conditions

Next we summarize characterize some relationships between various KKT conditions
as depicted in Fig. 5.

Claim B.2 (Linking 2 & 3 and 4 & 5) It holds that

1. ¬kkt2(k0, k1) $⇒ kkt3(k0, k1);
2. kkt2(k0, k1) ⇐⇒ ¬kkt3(k0 − 1, k1).
3. ¬kkt4(k0, k1) $⇒ kkt5(k0, k1);
4. ¬kkt5(k0, k1) ⇐⇒ kkt4(k0, k1 + 1).

Proof The proofs follow from direct computation.
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Fig. 5 Linking conditions

1. Consider the contrapositive: ¬kkt3(k0, k1) $⇒ kkt2(k0, k1). Since
¬kkt3(k0, k1) ⇐⇒ (θ + λ)(k0, k1) < x0k0+1, and since x0 is sorted, because

x0k0+1 ≤ x0k0 , it follows that (θ + λ)(k0, k1) < x0k0 .
2. Since ρ(k0, k1) > 0 for all valid k0 and k1, it holds that

¬kkt3(k0 − 1, k1)

⇐⇒ (θ + λ)(k0 − 1, k1) < x0(k0−1)+1 = x0k0

⇐⇒ k
k1∑

i=(k0−1)+1
x0i + (k1 − k)

(k0−1∑
i=1

x0i − r
)

< (ρ + 2k − k1) · x0k0

⇐⇒ ρ(k0, k1) · (θ + λ)(k0, k1)+ (2k − k1) · x0k0 < (ρ + 2k − k1) · x0k0
⇐⇒ (θ + λ)(k0, k1) < x0k0 ⇐⇒ kkt2(k0, k1).

3. Consider the contrapositive: ¬kkt5(k0, k1) $⇒ kkt4(k0, k1). Since
¬kkt5(k0, k1) ⇐⇒ θ(k0, k1) ≤ x0k1+1, and because x0k1+1 ≤ x0k1 , it follows

that θ(k0, k1) ≤ x0k1 .
4. Since ρ(k0, k1) > 0 for all valid k0 and k1, it holds that

kkt4(k0, k1 + 1)

⇐⇒ x0k1+1 − θ(k0, k1 + 1) ≥ 0

⇐⇒ (ρ(k0, k1)+k0)x0k1+1 ≥ k0

k1∑
i=k0+1

x0i + k0x
0
k1+1−(k−k0)

( k0∑
i=1

x0i −r
)

⇐⇒ x0k1+1 ≥ θ(k0, k1) ⇐⇒ ¬kkt5(k0, k1).
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Thus the claims are proved. ��

Claim B.3 (Linking kkt2(k0) & kkt2(k0 + j) and kkt3(k0) & kkt3(k0 + j)) Fix
k1 ∈ {k, . . . , n}. The following are true.

1. Let k−0 ∈ {0, . . . , k − 1} be such that ¬kkt2(k
−
0 , k1). Then ¬kkt2(k′0, k1) for

any k−0 ≤ k′0.
2. Let k+0 ∈ {0, . . . , k − 1} be such that kkt2(k

+
0 , k1). Then kkt2(k′0, k1) for any

k′0 ≤ k+0 .
3. Let k−0 ∈ {0, . . . , k−1} be such that¬kkt3(k

−
0 , k1). Then¬kkt3(k′0, k1) for any

k′0 ≤ k−0 .
4. Let k+0 ∈ {0, . . . , k − 1} be such that kkt3(k

+
0 , k1). Then kkt3(k′0, k1) for any

k+0 ≤ k′0.

This means that for every k1, the following sets are contiguous

K 2
0 (k1) := {k0 ∈ {0, . . . , k − 1} : kkt2(k0, k1)}

K¬20 (k1) := {k0 ∈ {0, . . . , k − 1} : ¬kkt2(k0, k1)},
K 3
0 (k1) := {k0 ∈ {0, . . . , k − 1} : kkt3(k0, k1)}

K¬30 (k1) := {k0 ∈ {0, . . . , k − 1} : ¬kkt3(k0, k1)}.

Proof The proof is by direct computation. For fixed k1, suppress the dependence on
k1 where clear, and define η(k0):=ρ(k0) · (θ + λ)(k0).

1. Let k0 = k−0 . By induction, it suffices to show the claim for j = 1, i.e., that

(∗) : xk0 ≤ (θ + λ)(k0) $⇒ (∗∗) : x0k0+1 ≤ (θ + λ)(k0 + 1).

But (θ + λ)(k0 + 1) = (
η(k0)+ (k1 − 2k)x0k0+1

)
/(ρ(k0)+ k1 − 2k) so

(∗∗) ⇐⇒ (ρ + k1 − 2k) · x0k0+1 ≤ η(k0)+ (k1 − 2k)x0k0+1
⇐⇒ x0k0+1 ≤ (θ + λ)(k0).

Therefore, since x0 is sorted, it is clear that (∗) $⇒ (∗∗).
2. Let k0 = k+0 . By induction, it suffices to show the claim for j = 1, i.e., that

(∗) : x0k0 > (θ + λ)(k0) $⇒ (∗∗) : x0k0−1 > (θ + λ)(k0 − 1).

But (θ + λ)(k0 − 1) = (
η(k0)+ (2k − k1)x0k0+1

)
/(ρ(k0)+ 2k − k1) so

(∗∗) ⇐⇒ (
ρ(k0)+ (2k − k1)

) · x0k0−1 > η(k0)+ (2k − k1)x
0
k0

⇐⇒ ρ(k0) · x0k0−1 > η(k0)+ (2k − k1) ·
(
x0k0 − x0k0−1

)
.
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For contradiction, suppose that (∗∗) does not hold. Then dividing by ρ(k0) > 0,

¬(∗∗) ⇐⇒ x0k0−1 ≤ (θ + λ)(k0)
2k − k1
ρ(k0)

· (x0k0 − x0k0−1)

(a)$⇒ x0k0−1 < x0k0−1
2k − k1
ρ(k0)

· (x0k0 − x0k0−1)

⇐⇒ 0 <
(
ρ(k0)+ 2k − k1

) · (x0k0 − x0k0−1) $⇒ 0 < 0

where (a) follows from (∗), and x0k0 − x0k0−1 ≤ 0 follows by since x0 is sorted.

3. Let k0 = k−0 . By induction, it suffices to show the claim for j = 1, i.e., that

(∗) : (θ + λ)(k0) < xk0+1 $⇒ (∗∗) : (θ + λ)(k0 − 1) < x0k0 .

But (θ + λ)(k0 − 1) = (
η(k0)+ (2k − k1)x0k0

)
/(ρ(k0)+ 2k − k1) so

(∗∗) ⇐⇒ η(k0)+ (2k − k1) · x0k0 < (ρ + 2k − k1) · x0k0
⇐⇒ (θ + λ)(k0) < x0k0 .

Therefore, since x0 is sorted, it is clear that (∗) $⇒ (∗∗).
4. Let k0 = k+0 . By induction, it suffices to show the claim for j = 1, i.e., that

(∗) : (θ + λ)(k0) ≥ xk0+1 $⇒ (∗∗) : (θ + λ)(k0 + 1) ≥ x0k0+2.

But (θ + λ)(k0 + 1) = (
η(k0)+ (k1 − 2k)x0k0+1

)
/(ρ(k0)+ k1 − 2k) so

(∗∗) ⇐⇒ η(k0)+ (k1 − 2k)x0k0+1 ≥ (ρ + (k1 − 2k))x0k0+2
(a)⇐$ ρ(k0) · x0k0+1 ≥ ρ(k0) · x0k0+2 + (k1 − 2k) · (x0k0+2 − x0k0+1)
⇐⇒ (ρ(k0)+ k1 − 2k) · (x0k0+1 − x0k0+2) ≥ 0

where (a) follows from (∗), and x0k0+1 − x0k0+2 ≥ 0 follows since x0 is sorted.

Thus the claims are proved. ��

B.2.3 Difference conditions

Next we summarize some conditions based on the successive differences of θ , λ,
and θ + λ. To do so, it is useful to introduce the discrete difference operator Δ

of a function f (x, y) of two arguments, defined as Δx f (x, y):= f (x + 1, y) −
f (x), Δy f (x, y):= f (x, y + 1) − f (x, y). We will be concerned with differences
in both arguments of the index-pair (k0, k1).

Claim B.4 (Δk0 & ¬kkt2 and Δk1 & ¬kkt5) For fixed k1 ∈ {k, . . . , n}, it holds that
1. Δk0θ(k0 − 1, k1) ≥ 0 ⇐⇒ ¬kkt2(k0, k1);
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2. Δk0λ(k0 − 1, k1) ≤ 0 ⇐⇒ ¬kkt2(k0, k1);
3. Δk1θ(k0, k1) ≥ 0 ⇐⇒ ¬kkt5(k0, k1);
4. Δk1λ(k0, k1) ≥ 0 ⇐⇒ ¬kkt5(k0, k1);
5. Δk1(θ + λ)(k0, k1) ≥ 0 ⇐⇒ ¬kkt5(k0, k1).

Proof For shorthand, let τ0:=∑k0
i=1 x0i −r , τ1:=

∑k1
i=1 x0i −r , ηθ (k0, k1):=ρ(k0, k1) ·

θ(k0, k1), ηλ(k0, k1):=ρ(k0, k1) · λ(k0, k1), and η(θ+λ)(k0, k1):=ρ(k0, k1) · (θ +
λ)(k0, k1).

1. Compute Δk0θ(k0 − 1, k1) = (2k−k1)·ηθ (k0,k1)−ρ(k0,k1)·(kx0k0−τ1)

ρ(k0,k1)·
(
ρ(k0,k1)+2k−k1

) . Then

Δk0θ(k0 − 1, k1) ≥ 0
(a)⇐⇒ (2k − k1) · ηθ (k0, k1)− ρ(k0, k1) · (kx0k0 − τ1) ≥ 0

⇐⇒ (2k − k1) · ηθ (k0, k1)+ ρ(k0, k1) · τ1
ρ(k0, k1) · k ≥ x0k0

(b)⇐⇒ k · ηθ (k0, k1)

k0 · ρ(k0, k1)
− ηθ (k0, k1)

k · k0 + τ1

k
≥ x0k0

⇐⇒ k
∑k1

i=k0+1 x
0
i − k·(k−k0)

k0
τ0

ρ(k0, k1)
−

(1
k

k1∑
i=k0+1

x0i −
k − k0
k · k0 τ0

)
+ τ1

k
≥ x0k0

(c)⇐⇒ k
∑k1

i=k0+1 x
0
i − k·(k−k0)

k0
τ0

ρ(k0, k1)
+ τ0

k
+ k − k0

k · k0 τ0 ≥ x0k0

⇐⇒ k
∑k1

i=k0+1 x
0
i

ρ(k0, k1)
−

( k · (k − k0)

k0 · ρ(k0, k1)
+ 1

k
+ k − k0

k · k0
)
· τ0 ≥ x0k0

(d)⇐⇒ k
∑k1

i=k0+1 x
0
i

ρ(k0, k1)
− k1 − k

ρ(k0, k1)
· τ0 ≥ x0k0 ⇐⇒ (θ + λ)(k0, k1) ≥ x0k0

⇐⇒ ¬kkt2(k0, k1)

where (a) follows since ρ(k0, k1) > 0 for all valid arguments, (b) follows from
the partial fractions identity (2k − k1)/ρ(k0, k1) = k

k0·ρ(k0,k1)
− 1

k·k0 , (c) follows
from 1

k τ1 − 1
k

∑k1
i=k0+1 x

0
i = 1

k τ0, and (d) follows from algebraic manipulation.
2. Compute

λ(k0 − 1, k1)

=
(
(k−(k0−1))

k1∑
i=k0

x0i + (k1 − (k0 − 1))
(k0−1∑
i=1

x0i − r
))

/ρ(k0−1, k1)

= (
ηλ(k0, k1)+ (k − k1) · x0k0 + τ1

)
/
(
ρ(k0, k1)+ 2k − k1

)
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and Δk0λ(k0 − 1, k1) = (2k−k1)·ηλ(k0,k1)−ρ(k0,k1)·
(
(k−k1)·x0k0+τ1

)
ρ(k0,k1)·

(
ρ(k0,k1)+2k−k1

) . Then

Δk0λ(k0 − 1, k1) ≤ 0
(a)⇐⇒ (2k − k1) · ηλ(k0, k1)− ρ(k0, k1) ·

(
(k − k1) · x0k0 + τ1

) ≤ 0

⇐⇒ (2k − k1) · ηλ(k0, k1)

ρ(k0, k1)
− τ1 ≤ (k − k1) · x0k0

(b)⇐⇒ (2k − k1) · ηλ(k0, k1)

ρ(k0, k1) · (k − k1)
− ρ(k0, k1) · τ1

ρ(k0, k1) · (k − k1)
≥ x0k0

⇐⇒ c1

k1∑
i=k0+1

x0i + c2 · τ0 ≥ x0k0

where (a) holds because ρ(k0, k1) > 0 for all valid arguments, (b) holds since
(k − k1) < 0 for k1 > k (and at k1 = k, it holds since ρ(k0, k) > k · (k −
k0)), and c1:= (2k−k1)·(k−k0)−ρ(k0,k1)

ρ(k0,k1)·(k−k1) and c2:= (2k−k1)·(k1−k0)−ρ(k0,k1)
ρ(k0,k1)·(k−k1) . Then after

simplification, c1 = k/ρ(k0, k1) and c2 = (k1 − k)/ρ(k0, k1) so we identify
Δk0λ(k0 − 1, k1) ≤ 0 ⇐⇒ (θ + λ)(k0, k1) ≤ x0k0 ⇐⇒ ¬kkt2(k0, k1).

3. Compute Δk1θ(k0, k1) = ρ(k0,k1)·k0·x0k1+1−k0ηθ (k0,k1)

ρ(k0,k1)·(ρ(k0,k1)+k0) . Then

Δk1θ(k0, k1) ≥ 0
(a)⇐⇒ ρ(k0, k1) · k0 · x0k1+1 ≥ k0ηθ (k0, k1) ⇐⇒ x0k1+1 ≥ θ(k0, k1)

⇐⇒ ¬kkt5(k0, k1).

4. Compute Δk1λ(k0, k1) = ρ(k0,k1)·
(
(k−k0)x0k1+1+τ0

)
−k0ηλ(k0,k1)

ρ(k0,k1)·
(
ρ(k0,k1)+k0

) . Then

Δk1λ(k0, k1) ≥ 0
(a)⇐⇒ ρ(k0, k1) ·

(
(k − k0)x

0
k1+1 + τ0

)− k0ηλ(k0, k1) ≥ 0

⇐⇒ x0k1+1 ≥
k0

k − k0

ηλ(k0, k1)

ρ(k0, k1)
− τ0

k − k0

(b)⇐⇒ x0k1+1 ≥ θ(k0, k1)

⇐⇒ ¬kkt5(k0, k1)

where (a) holds because ρ(k0, k1) > 0 for all valid arguments and (b) holds
because k0·(k1−k0)

ρ(k0,k1)·(k−k0) − 1
k−k0 = k0−k

ρ(k0,k1)
by algebraic manipulation.

5. Consider the equivalent form of the original statement given by Δk1(θ +
λ)(k0, k1) < 0 ⇐⇒ kkt5(k0, k1). Compute Δk1(θ + λ)(k0, k1):=(θ +
λ)(k0, k1 + 1)− (θ + λ)(k0, k1) giving

Δk1(θ + λ)(k0, k1) =
ρ(k0, k1)

(
kx0k1+1 + τ0

)−k0
(
k

∑k1
i=k0+1x

0
i + (k1 − k)τ0

)

ρ(k0, k1) ·
(
ρ(k0, k1)+ k0

) .
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Then

Δk1(θ + λ)(k0, k1) < 0

(a)⇐⇒ ρ(k0, k1) ·
(
k · x0k1+1 + τ0

)− k0
(
k

k1∑
i=k0+1

x0i + (k1 − k)τ0
)

< 0

⇐⇒ ρ(k0, k1) · kx0k1+1 < k0
(
k

k1∑
i=k0+1

x0i + (k1 − k) · τ0
)
− ρ(k0, k1) · τ0

⇐⇒ ρ(k0, k1) · kx0k1+1 < k0k
k1∑

i=k0+1
x0i +

(
k0(k1 − k)− ρ(k0, k1)

) · τ0

(b)⇐⇒ ρ(k0, k1) · kx0k1+1 < k0k
k1∑

i=k0+1
x0i + k · (k0 − k) · τ0

⇐⇒ ρ(k0, k1) · x0k1+1 < k0

k1∑
i=k0+1

x0i + ·(k0 − k) · τ0

⇐⇒ x0k1+1 <
k0

∑k1
i=k0+1 x

0
i + ·(k0 − k) · τ0

ρ(k0, k1)
= θ(k0, k1)

⇐⇒ kkt5(k0, k1) > 0.

where (a) follows because ρ > 0 for all valid arguments and (b) follows from the
identity k0(k1 − k)− ρ(k0, k1) = k(k0 − k).

Thus the claims are proved. ��

C Algorithmic detail

C.1 PLCP

Werecall somebackground for processing a PLCP(λ; q, d, M)whereq ≥ 0n−1 andM
is a symmetric, positive definite Z -matrix before specializing to the sorted projection
problem (7). The approach largely follows the symmetric parametric principal pivoting
method outlined in [12, Algorithm 4.5.2], but instead of computing the upper bound
for λ ahead of time, we check the whether or not the existing solution satisfies the
top-k-sum budget constraint at each iteration. We begin by noting that any basis ξ ⊆
{1, . . . , n − 1} partitions the affine relationship into the following system

[
wξ(λ)

wξ c(λ)

]
=

[
Mξξ Mξξ c

Mξ cξ Mξ cξ c

] [
zξ (λ)

zξ c(λ)

]
+

[
qξ + λdξ

qξ c + λdξ c

]
, (24)

where the notation w(λ) and z(λ) is used to emphasize the dependence on parameter
λ, and where the linear system always has a unique solution for every ξ since M has
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positive principal minors. The PLCP solves the projection problem (7) by identifying
an optimal basis ξ̄ and parameter λ̄ ≥ 0 such that the solution w(λ̄) and z(λ̄) satisfy:

– subproblem optimality for LCP(q + λ̄d, M): this consists of (i) complementarity:
wξ̄ (λ̄) = 0 and zξ̄ c(λ̄) = 0; and (ii) feasibility: zξ̄ (λ̄) ≥ 0, wξ̄ c(λ̄) ≥ 0, and

w(λ̄) = Mz(λ̄)+ q + λ̄d;
– outer problem optimality: the primal solution x̄(λ̄) = �x0 − λ̄1k + D� z̄, which is
an implicit function of λ, satisfies 1�k x(λ̄) = r , assuming that 1�k �x0 > r .

Under the present setting, the parametric LCP procedure begins by solving the
trivial LCP(q, M) associated with λ = 0 by taking ξ = ∅, z ≡ 0, and w = q ≥ 0.
This solution, denoted

(
z(0), w(0)

)
may not satisfy the budget constraint, in which

case λ needs to be increased. The remaining steps utilize the fact that the solution
map z(λ) associated with the LCP subproblem at value λ is a piecewise-linear and
monotone nondecreasing function in λ. Therefore, as λ increases, the procedure only
“adds” nonnegative components to z(λ). It stops once a large enough λ ≥ 0 has been
identified so that the budget constraint is satisfied.

The mechanics of the PLCP specialized to our problem are as follows. To solve any
LCP subproblem associated with λ, we seek identify a complementary, feasible basis
ξ (depending on λ) of dimension m that gives rise to the solution map

zξ (λ) = M−1ξξ (−qξ − λdξ ) = zξ (0)− λM−1ξξ dξ (25.1)

wξ c(λ) = Mξ cξ zξ (λ)+ qξ c + λdξ c (25.2)

via the linear system (24) where M−1ξξ :=(Mξξ )
−1.

We will show three things: (i) beginning from ξ1 = {k} in iteration 1, ξ t remains
contiguous for all subsequent iterations t ≥ 1, which leads to a simple form of the
minimum ratio test for identifying the breakpoint λt+1 and indicates that a basis ξ t

is subproblem-optimal for λ ∈ [λt , λt+1]; (ii) checking whether or not λt+1 is “large
enough” simplifies, i.e., that there exists λ̄ ≤ λt+1 such that the primal solution x(λ̄)

satisfies the budget constraint; and (iii) updating the solution map z(λt+1) associated
with the new breakpoint λt+1 from the previous solution z(λt ) simplifies. In the below
subsections, we drop the dependence on t and use “+” to denote the next value when
clear. The simplified expressions for each step involve the observation that M−1ξξ has
an explicit form given by

(Mξξ )
−1
i j =

(|ξ | + 1−max(i, j)) ·min(i, j)

|ξ | + 1
. (26)

Identifying the next breakpoint

Suppose that w(λ) ≥ 0 and z(λ) ≥ 0 are optimal for the subproblem with parameter
λ and contiguous basis ξ (i.e., ξ = {a, a + 1, . . . , b − 1, b} for n − 1 ≥ b ≥ a ≥ 1)
that contains k with |ξ | = m. Inspecting (25.1), notice that zξ (λ) = (≤ 0)ξ +λM−1ξξ ekξ
because q ≥ 0, d = −ek , and because of the fact that M is a Z -matrix implies
that M−1i j ≥ 0. Since Mξξ also is a Z -matrix, it holds that M−1ξξ ≥ 0 and thus that

123



On O(n) algorithms for projection onto the top-k-sum…

zξ (λ′) ≥ zξ (λ) for λ′ ≥ λ. On the other hand, suppose that the current solution does
not satisfy the budget constraint, i.e., λ is not large enough. Because of the form of
M = DD�, Mξ cξ is the matrix of zeros except for at most two negative elements in
different columns. Explicitly, the two elements of Mξ cξ zξ (λ) are: −zξ1(λ) in index
ξ1−1 and−zξm (λ) in index ξm+1. Since d = −ek , we may neglect the term dξ c = 0,
so there are only two possible indices where wξ c(λ) may fail to be nonnegative: a− 1
where a:=ξ1, and b + 1 where b:=ξm .3 As a result, the “minimum ratio test” only
requires two comparisons per pivot where the smallest parameter such thatwi∗(λ) = 0
for some i∗ ∈ ξ c is given by

λ+:=min
λ′≥λ

{
λ′ : Mξ cξ zξ (λ

′)+ qξ c + λdξ c = 0
}

(∗)= min
λ′≥λ

{
λ′ : 0 = −za(λ)+ qa−1, 0 = −zb(λ)+ qb+1

}

= min
λ′≥λ

{
λ′ : 0 = −za(0)− λ′(M−1ξξ ekξ )aξ + qa−1 ,

0 = −zb(0)− λ′(M−1ξξ ekξ )bξ + qb+1
}

= min
{(
qa−1 − za(0)

)
/(M−1ξξ ekξ )1 ,

(
qb+1 − zb(0)

)
/(M−1ξξ ekξ )m

}

= min
{
λa, λb

}
(27)

where (∗) follows (after the first iteration) because of the form of d. The constant
cost of determining λ+ is clear from the explicit expression for (M−1ξξ )i j via (26).
If λ+ = λa , then we define s:=a − 1 and update the basis ξ+ = (s, ξ); otherwise
we define s:=b + 1 and set ξ+ = (ξ, s). Therefore, the next basis ξ+ is contiguous
and contains k. Next we must check whether λ+ ≥ λ̄, i.e., whether the current basis
contains a solution that satisfies the budget constraint for some parameter in the range
[λ, λ+].
Checking optimality

The procedure terminates based on the observation that for the next breakpoint λ+
(as determined above with current basis ξ ), if T(k)(x(λ+)) < r with current basis
ξ , then there must exist a λ̄ < λ+ that solves T(k)(x(λ̄)) = r for basis ξ . From the
primal solution map x(λ) = �x0 − λ1k + D�z(λ), which is derived from stationarity
of the Lagrangian, evaluation of the top-k-sum simplifies to T(k)(x(λ)) = 1�k x(λ) =∑k

i=1 �x0i − kλ+ zk(λ) where

zk(λ) = −(M−1ξξ qξ )kξ + λ · (M−1ξξ ekξ )kξ = zk(0)+ λ · (M−1ξξ ekξ )kξ .

If T(k)(x(λ+)) < r , then λ̄ satisfies

λ̄ =
( k∑
i=1

�x0i − r + zk(0)
)
/
(
k − (M−1ξξ )

kξ kξ

)
, (28)

3 Note that a parametric pivoting method with similar direction vector d was studied in [31].
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which can be done in constant time due to (26). Finally, we can reconstruct x̄(λ̄) =
�x0 − λ̄1k + D�z(λ̄). Since D has only two elements per row, and by observing

that zξ c(λ̄) = 0, the matrix-vector multiplication can be performed in O(|ξ |) time.
Otherwise, it remains to update the solution maps zξ+(λ+) and wξ+(λ+) and then
return to the breakpoint identification step.

Updating the subproblem solution

Thus far, excluding the recovery of a primal optimal solution, our procedure has
required computations involving only a very particular subset of zξ (0), namely za(0),
zk(0), and zb(0). This observation allows for performing a constant number of updates
per iteration. Since ξ+ \ ξ = {s} changes by one element per iteration and ξ+ remains
contiguous, the Schur complement rule can be used to update the three elements
of zξ+(0) in constant time, which in turn provides the new solution via zξ+(λ+) =
zξ+(0)+ λM−1

ξ+ξ+e
k , where the latter term can be computed in constant time from the

form of M−1 given by (26).
Accordingly, the goal of this section is to compute zξ+

a+
(0), zξ+

k+
(0), and zξ+

b+
(0)

for basis ξ+ at (new) locations a+, k+, and b+ in ξ+ from an existing solution zξa(0),
zξk (0), and zξb (0) with basis ξ . There are two cases, corresponding to ξ+ = ξ ∪ {s}
with

1. s = a − 1. Then ξ+ = (a − 1, ξ) so that a+ = a − 1, and

zξ+(0) =
[
zs(0)
zξ (0)

]
= −M−1

ξ+ξ+qξ+ =
[

2 (−1, 0, . . . , 0)
(−1, 0, . . . , 0)� Mξξ

]−1 [−qs
−qξ

]

=
[ 1

σ
(za(0)− qa−1

zξ (0)+ 1
σ
(M−1ξξ )ξ,1 · (za(0)− qa−1)

]
,

where ta = (−1, 0, . . . , 0)� and σ = 2 − t�a M−1ξξ ta = 2 − (M−1ξξ )1,1 = (m +
2)/(m + 1). Thus

a+ = a − 1, a+ξ+ = 1, k+ξ+ = kξ + 1, b+ξ+ = bξ + 1

za+(0) = 1
σ
(za(0)− qa−1(0))

zk+(0) = zk(0)+ (M−1ξξ )
kξ,1 · 1σ (za(0)− qa−1(0)) = zk(0)+ (M−1ξξ )

kξ,1 · za+(0)

zb+(0) = zb(0)+ (M−1ξξ )m,1 · 1σ (za(0)− qa−1(0)) = zb(0)+ (M−1ξξ )ξb,ξa · za+(0).

2. s = b + 1. Then ξ+ = (ξ, b + 1) so that b+ = b + 1, and

zξ+(0) =
[
zξ (0)
zs(0)

]
= −M−1

ξ+ξ+qξ+ =
[

Mξξ (0, . . . , 0,−1)�
(0, . . . , 0,−1) 2

]−1 [−qξ

−qs
]

=
[
zξ (0)+ 1

σ
(M−1ξξ )ξ,m · (zb(0)− qb+1)
1
σ
(zb(0)− qb+1)

]
,
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where tb = (0, . . . , 0,−1)� and σ = 2 − t�b (M−1ξξ )tb = 2 − (M−1ξξ )m,m =
(m + 2)/(m + 1). Thus

b+ = b + 1, a+ξ+ = 1, k+ξ+ = kξ, b+ξ+ = bξ + 1

za+(0) = za(0)+ (M−1ξξ )1,m · 1σ (zb(0)− qb+1) = za(0)+ (M−1ξξ )1,m · zb+(0)

zk+(0) = zk(0)+ (M−1ξξ )
kξ,m · 1σ (zb(0)− qb+1) = zk(0)+ (M−1ξξ )

kξ,m · zb+(0)

zb+(0) = 1
σ
· (zb(0)− qb+1).

The constant cost of the solution update procedure is clear due to the explicit formula
for (M−1ξξ )i j .

Recovering k0 and k1

Given optimal indices ā and b̄ and a solution x̄ produced by PLCP, the sorting-indices
k0 and k1 can be recovered without inspecting x̄ by setting (k̄0, k̄1) = (k− 1, k) if the
problem is solved immediately; otherwise (k̄0, k̄1) =

(
max{ā− 1, 0},min{b̄+ 1, n}).

C.2 ESGS

We now provide additional details justifying the form of (i) the candidate solution for
a given candidate index-pair (k′0, k′1) in (19); and (ii) the form of the KKT conditions
(20) that are used in the analysis of the ESGS algorithm.

Candidate solution

We now provide an argument justifying the construction of the linear system in θ ′, λ′
and candidate solution x ′(k′0, k′1) from (19). The linear equations in λ′ and θ ′ are
recovered by summing various components of the KKT conditions

k′0λ′ =
k′0∑
i=1

x0i − r + θ ′(k − k′0), and (k′1 − k′0)θ ′ =
k′1∑

i=k′0+1
x0i − λ′(k − k′0).

(29)

The equation for λ′ is recovered by summing the stationarity conditions corre-
sponding to indices in α′ and eliminating 1�

α′x
′
α′ using the constraint. That is,

∑k′0
i=1 x ′i =

∑k′0
i=1( �x0i − λ′) and r =∑k′0

i=1 x ′i + (k − k′0)θ ′ imply
∑k′0

i=1 �x0i − k′0λ′ =
r − (k − k′0)θ ′. On the other hand, equation θ ′ is recovered by summing the station-
arity conditions corresponding to indices in β ′ and using 1�

β ′μ
′ = (k − k0). That is,

∑k′1
i=k′0+1 x

′
i =

∑k′1
i=k′0+1 �x

0
i − (k − k′0)λ′ and

∑k′1
i=k′0+1 x

′
i = (k′1 − k′0)θ ′. The linear
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system A · (λ, θ)� = b has explicit solution

A:=
[

k0 −(k − k0)
k − k0 k1 − k0

]
, b:=

[∑k0
i=1 �x0i − r∑k1
i=k0+1 �x0i

]
, A−1 = 1

ρ

[
k1 − k0 k − k0
−(k − k0) k0

]
,

where ρ:=det[A] = k0(k1 − k0)+ (k − k0)2.

KKT conditions

Next we justify the reduction of the KKT conditions from (18) to the five conditions
listed in (20). The KKT conditions (18) are equivalent to (20) because of the following
argument. Inspecting condition x̄k̄0 > θ̄ at index k′0 and using x̄β̄ = θ̄β̄ to obtain
x ′k′0+1 = θ ′, it holds that

⎧⎨
⎩
x ′k′0 > θ ′ ⇐⇒ �x0k′0 − λ′ > θ ′ ⇐⇒ �x0k′0 > θ ′ + λ′

θ ′ + λ′ = x ′k′0+1 + λ′ = �x0k′0+1 − λ′μ′k′0+1 + λ′
(∗)≥ �x0k′0+1

⇐⇒ �x0k′0 > θ ′ + λ′ ≥ �x0k′0+1,

where (∗) holds since μ′k′0+1 ∈ [0, 1] and λ′ > 0. Similarly, inspecting condition

θ̄ > x̄k̄1+1 at index k′1, and using the form of μ̄ and x̄β̄ = θ̄1β̄ to obtain x ′k′1 = θ ′, it
holds that

⎧⎨
⎩

θ ′ > x ′k′1+1 = �x0k′1+1
θ ′ = x ′k′1 = �x0k′1 − μ′k′1+1λ

′ (∗∗)≤ x0k′1

⇐⇒ �x0k′1 ≥ θ ′ > �x0k′1+1,

where (∗∗) holds since μ′k′1 ∈ [0, 1] and λ′ > 0.
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